
 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 1 Release 1

 AN006

FAQ's for Controlling an AI-80

Table of Contents

1. Does a Windows DLL or driver exist for the AI-80?...1
2. How do I talk to an AI-80?...1
3. How do I control the AI-80?..2
4. How do I write to or read from the AI-80's properties?..2
5. How can data be exchanged between the AI-80's hardware settings and programs

created with A.I.WorkBench?...3
6. What are the A.I.WorkBench variable types?...5
7. How do I control the programs generated by the A.I.WorkBench compiler?............5
8. Is it possible to write to the AI-80's flash memory?...7
9. Can the AI-80 decode Bell 202 or V.23 FSK signals?...7
10. How do I change the AI-80 RS-232 port baud rate?...7
11. The AI-80 returned an error code in response to a command. What does the

number mean?...8
12. How can I get the status of any running programs?...9
13. Is there a summary list of all the AI-80 hardware properties?....................................9

1. Does a Windows DLL or driver exist for the AI-80?

No. Controlling an AI-80 is performed directly by sending commands from the PC's RS-
232 serial communications port.

2. How do I talk to an AI-80?

By sending commands and receiving data over its RS-232 serial port. The serial port
operates at one of the following baud rates: 9600, 19200, 38400, 57600, 115200. The
serial format is fixed at 8 data bits, 1 stop bit, and no parity. The baud rate at power up is
9600 bps and can be changed by sending a command. If the AI-80 detects a line break
(at least 11 consecutive space bits), it resets the baud rate back to the default value of
9600 bps. Only three connections to the 9 pin connector are required. They are TX data,
RX data, and Ground. The AI-80 can sense the status of the RTS signal and set the CTS
signal as either active or in-active. While the RTS and CTS signals are not required for
communication, they can be utilized by programs running on the PC and AI-80 for
controlling data flow or other purposes.

All commands sent to and data received from an AI-80 use ASCII characters. An AI-80
command is simply a series of ASCII characters followed by a <CR> character (ASCII
13). Optionally, a <LF> character (ASCII 10) may follow the <CR> character. The AI-80
ignores the trailing <LF> character. For every command sent, the AI-80 responds with
either an acknowledgement, error code, or the requested data. Because ASCII
characters are used for the commands, any terminal program (i.e. Window's
HyperTerminal) may be used to send commands to the AI-80. Please note that the AI-80

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 2 Release 1

 AN006

does not echo any sent characters. In addition, all responses sent by the AI-80 are
terminated with a <CR> character.

Please note that AI-80 commands are case sensitive. All commands use only upper case
characters.

3. How do I control the AI-80?

In general there are two methods used to control the AI-80 via the RS-232 port. The first
is to send very simple commands to the AI-80 that control its various tone generators and
telephone interface settings. The AI-80 has approximately 170 different "properties" that
can be read or written to. Each property controls a different aspect of the AI-80. For
example if you want to change the frequency of a tone generator, you write to its
frequency property. Or if you want to read the signal level on the telephone line, you can
read the level meter's property.

The second method is to write a program for the AI-80 and let the program control the AI-
80 properties. If you have used the A.I.WorkBench software included with the AI-80, then
you know how to write AI-80 programs using a simplified high level language. The
programs can be either stored in the AI-80's flash memory or loaded into the AI-80's RAM
via the RS-232 port. Then commands can be sent from the PC to start or stop these
programs. In addition, any executing program has the ability to send or receive data from
the serial port directly.

For timing critical operations it is usually better to create an AI-80 program, load it into
either flash or RAM, and then control it from the PC. This eliminates any timing
uncertainties causes by communication delays.

4. How do I write to or read from the AI-80's properties?

To control the AI-80 hardware settings via the RS-232 serial port, use the Set Data ">"
command. This command has the following syntax:

 >(ref)=(data)

where "(ref)" represents the hardware setting to change and "(data)" is the new value for
the hardware property. The syntax for the "(ref)" is as follows:

 H(data type)(id)

where (data type) is either "N" or "S" depending of whether or not the hardware settings
requires a numeric or string value. The "(id)" value represents an integer number
identifying the specific property setting to change.

As an example, to set tone generator B to 1.23kHz at an output level of 0.413 Vrms, type
the following three Set Data commands using any terminal program:

 >HN50=1230<CR>[<LF>]*
 >HN51=0.413<CR>[<LF>]*
 >HN52=1<CR>[<LF>]*

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 3 Release 1

 AN006

(*) Each commands ends with a carriage return characters (ASCII 13) and optionally a
line feed characters (ASCII 10).

After sending each command, the AI-80 should respond with "OK".

The first command writes the value 1230 to hardware property setting number 50 (Tone
Generator B frequency). The second command writes 0.413 to hardware property setting
number 51 (Tone Generator B level). Finally the third command writes the value 1 to
hardware property setting number 52 (Tone Generator B enable). This causes the AI-80
to output a 1.23 kHz tone at 0.413 Vrms from the telephone interface port.

To query hardware settings from the AI-80, use the Get Data command “?”. For example,
to read the frequency setting for tone generator B, type the following command:

 ?HN50<CR>[<LF>]

This causes the AI-80 to return the string “1.23e3”. All values returned by the AI-80 are
in scientific notation.

Note: When specifying numeric values, they must be in the following format:
 [-]n[.n] where: n is 1 or more digits 0 to 9
 [] indicates optional

A description of each hardware property can be found in the AI-80 reference manual. For
a listing of all the property numbers, see question: 13 "Is there a summary list of all the
AI-80 hardware properties?"

5. How can data be exchanged between the AI-80's hardware settings
and programs created with A.I.WorkBench?

From the PC's point of view, the AI-80 looks like a large collection of registers. These
registers control the operation of the AI-80's hardware properties. Additional registers
control the execution of the programs compiled by the A.I.WorkBench software and are
used to hold the data stored in the program's declared variables. The registers hold
either 32 bit floating point numbers, or up to a 64 character string. Access to these
registers vary. Most have read and write access, while some are read only, and others
are write only.

When the PC wants to read a register is must use the get data command "?".

For example, to read the level meter on the AI-80, the PC should send:

 ?HN86<CR>[<LF>]

The first letter "H" means hardware property register, while the second letter "N" means
numeric value. The number 86 is the register number of the AI-80 level meter.

To read the AI-80 software version string, the PC can send the following command:

 ?HS2<CR>[<LF>]

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 4 Release 1

 AN006

In this case, the letter "S" means a string register is being read, and the register number
is 2.

There are over 170 different hardware related registers that are used to control the AI-80.
For example, when you create a program using A.I.WorkBench to start the ring generator:

 Let RING.LEVEL = 80
 Let RING.FREQ = 22
 Let RING.ENABLE = 1

The three commands are used to set register HN48 (level) to 80, HN47
(frequency) to 22, and HN49 (enable) to 1.

You can read back the ring generator settings by sending the command:

 ?HN48:?HN47:?HN49<CR>[<LF>]

to the AI-80 from the PC. Note that the colon character ':' can be used to send multiple
commands to the AI-80 at the same time. The three responses from the AI-80 are also
sent back as one text line, with each response separated by the colon character.

In situations were you require the PC to pass information back and forth to a
A.I.WorkBench program, the simplest method is to use the variable registers.

If you declare variables in your AI-80 script program using the EXPORT or IMPORT
keywords, then they can be used to exchange data with the PC. The following
A.I.WorkBench program sets a declared variable to a value of 3.14.

 Export Numeric MyVariableName 1
 Let MyVariableName = 3.14

To read this variable from the PC, use the following command:

 ?GN10001<CR>[<LF>]

The first letter "G" refers to general variable register, while the second letter "N" means
you want to read a numeric value. A special block of 300 registers is reserved for all
script variables declared with the EXPORT or IMPORT key words. The PC can read or
write to any of these variables by adding an offset of 10000 to the register number.

For example, if the PC sends:

 >GN10001=43.7<CR>[<LF>]

It sets register #1 to 43.7. A program can read this value and use it for various purposes.
The following example sets the ring generator frequency to the value stored in the
variable.

 Import Numeric MyVariableName 1
 Let RING.FREQ = MyVariableName

The program reads the value of 43.7 and sets the ring generator frequency to that value.

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 5 Release 1

 AN006

Using registers is simplest method to exchange data between the AI-80 and the PC. It
keeps the PC as the communications master by always initiating commands. A second
method exists where an AI-80 program can directly send back data to the PC via the RS-
232 port. However special precautions must be observed to prevent collisions between
any data the AI-80 sends and any responses the AI-80 automatically generates due to
receiving a command from the PC.

Note: It is also possible for the PC to read the status of the A.I.WorkBench program (if it
is running, paused, or stopped). This information is stored in registers VN103, VN203,
VN303, and VN403.

6. What are the A.I.WorkBench variable types?

The AI-80 can execute up to four program processes simultaneously. Each process has
a private data pool from which variables are allocated. In addition, all of the processes
can access a common data pool. The common data pool is normally used to share data
between the processes and also the PC.

In a script program you can declare four different types of variables. They are: LOCAL,
GLOBAL, IMPORT, EXPORT.

The first two (LOCAL and GLOBAL) are always allocated in the process's
private data pool. Though possible, it is not recommend that the PC read and write
directly to these variables. This is because they may change location every time the
program is compiled within A.I.WorkBench.

The last two (IMPORT and EXPORT) are always allocated in the common data pool.
Since these variables are meant for sharing data between processes or the PC, the
compiler must be told which register number to used. The syntax for these two variable
types are:

 Import <vartype> <varname> <register number>
 Export <vartype> <varname> <register number>

Where the register number is from 1 to 300.

7. How do I control the programs generated by the A.I.WorkBench
compiler?

In the A.I.WorkBench software, you can write programs using high level statements like
LOOP, IF-THEN-ELSE, FOR-NEXT, and SELECT. These high level statements are
compiled into a much simpler instruction set that the AI-80 executes. When you compile
a program using the A.I.WorkBench software, it creates a number of output files. One of
these files has a .obc extension. This file contains the instructions that the AI-80
executes. It is a complex string of ASCII characters that allows the AI-80 to perform the
high level statements.

A brief summary of the commands used to control AI-80 programs are as follows:

1. Clear Program Memory: PC

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 6 Release 1

 AN006

Send this command before loading any programs into the AI-80's memory.

ie. PC<CR>[<LF>]

2. Load Program: PL"(program)"
Loads a program into the AI-80's RAM. The program must be enclosed in quotation
marks. Note that if the program itself contains quotation marks, then they must be
"doubled up". For example, to load the following program:

TIS"hello"GS1

The command syntax is:

PL"TIS""hello""GS1"<CR>[<LF>]

If programs are longer than 128 characters, they should be broken up into text strings no
longer than 128 characters. Then load each text string in sequence by using the "PL"
command.

The maximum program size that can be loaded into the AI-80's RAM is 16384 bytes.

3. Start Program Execution from RAM: PS(n)M
This command starts executing the program loaded into RAM. The value (n) must range
from 1 to 4. This value specifies which "virtual" processor is used to execute the
program. The AI-80 can run up to 4 programs at the same time. Each program executes
on a virtual processor identified with a number from 1 to 4.

ie. Run program loaded into RAM on virtual processor #1

 Send: PS1M<CR>[<LF>]

4. Start Program Execution from Flash Memory: PS(n)F(file number)
This commands starts executing a program from flash memory specified by the (file
number) parameter. As with the above command, the value (n) specifies which
processor use (valid range is from 1 to 4). Programs files are loaded into the flash
memory by using the A.I.WorkBench software.

ie. Run program #500 stored in flash memory on virtual processor #2

 Send: PS2F500<CR>[<LF>]

5. Halt Program Execution: PH(n)
Suspends program execution. The value (n) specifies which virtual processor. If n=0,
then all active processors are suspended.

ie. Halt virtual processor #1

 Send: PH1<CR>[<LF>]

6. Resume Program Execution: PR(n)
Resumes program execution. The value (n) specifies which virtual processor. If n=0,
then all halted processors resume program execution.

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 7 Release 1

 AN006

ie. Resume programming running on virtual processor #1

 Send: PR1<CR>[<LF>]

7. Stop Program Execution: PX(n)
Stops program execution. The value (n) specifies which virtual processor. If n=0, then all
halted processors are stopped.

ie. Stop all processors

 Send: PX0<CR>[<LF>]

8. Is it possible to write to the AI-80's flash memory?

While the AI-80 can read and execute programs from flash memory, it can not write
programs to the flash memory by itself. It does support very low level commands for
writing to the flash on a byte-by-byte level. The A.I.WorkBench software uses these
commands to manage the directory structure and allocates space within the flash
memory. It can be quite complex to perform this task manually. It is not recommend to
attempt to write to the flash memory in the AI-80, as any mistakes may render the file
structure unreadable.

The A.I.WorkBench software should be used to write programs into the flash memory. To
automate tasks, you can create a simple file list that the A.I.WorkBench software uses to
"batch" load multiple programs. In addition, this file list can be executed when the
A.I.WorkBench starts if it is included in the command line.

9. Can the AI-80 decode Bell 202 or V.23 FSK signals?

An FSK decoder is an option for the AI-80. Unless the option is enabled, the AI-80 is
unable to decode FSK signals. The exception to this is when using the TRsSim PC
software. The TRsSim software automatically enables the FSK decoder in the AI-80 so
that it can be used to perform SMS testing.

If an AI-80 has the FSK decoder option enabled, it will display "SO 1" briefly upon
power up. To enable this option, a software key must be entered into the AI-80 by using
the A.I.WorkBench software. Once this key is entered and the AI-80 reset, the FSK
decoder will be activated.

10. How do I change the AI-80 RS-232 port baud rate?

On power up or reset, the AI-80’s serial port is configured to 9600 baud, 8 data bits, 1
stop bit, no parity. The baud rate can be changed to either 19200, 38400, 57600, and
115200 bps by sending the following command.

>HN15=x where x represents the baud rate as follows:
 x=0 9600
 x=1 19200
 x=2 38400

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 8 Release 1

 AN006

 x=3 57600
 x=5 115200

If the AI-80 detects a line break (more than 11 consecutive space bits), it automatically
resets the baud rate to 9600 bps.

11. The AI-80 returned an error code in response to a command. What
does the number mean?

If the AI-80 does not understand a command sent to it, it responds with an error number
in the format of:

ERR=(x)

where (x) is an integer number indicating the error code. The following table lists the
possible error codes.

Type Error # Description
Command 100 Unknown command

 101 Can’t find the “=“ with the “>“ (set) command
 102 No value specified with the “>“ (set) command
 110 Invalid sector specified with the flash commands
 111 Invalid address specified with the flash commands
 112 Invalid byte count specified with the flash commands
 113 No “|” character found with the flash commands
 114 Invalid data with the flash write command
 115 Flash device program fail with flash save command
 116 Flash device erase fail with flash erase command
 120 Bad VTP number specified with program commands
 121 Invalid VTP program start command format
 122 Can’t find file or invalid memory program run command

Reference 501 Invalid reference location (must be either H,G,V, or I)
 502 Invalid reference data type specified
 503 Invalid encoded reference (internal reference coding error)
 504 Invalid global/local data register location specified
 505 Invalid VTP register number of data type mismatch

Program 1000 Program counter exceed program length (no program end
command detected)

 1001 Unknown program command or bad command syntax
 1002 Reference data type mismatch
 1003 Specified label is an illegal value
 1004 Can’t find the specified label
 1005 VTP stack underflow (no data to pop)
 1006 VTP stack overflow (no room to push)
 1007 Data type mismatch with data popped from stack
 1008 Bad return program address popped from the stack
 1009 Illegal VTP number specified with task control commands

Hardware
Properties

10xxxx Set property command. Invalid number

 11xxxx Set property command. Invalid source data address
 12xxxx Set property command. Can’t write to a read only property
 13xxxx Set property command. Data type mismatch
 15xxxx Get property command. Invalid property number
 16xxxx Get property command. Invalid destination data address
 17xxxx Get property command. Can’t read from a write only property
 18xxxx Get property command. Data type mismatch

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 9 Release 1

 AN006

 xxxx = property number passed to the Set/Get command

12. How can I get the status of any running programs?

The AI-80 can execute up to four processes simultaneously. A program for the AI-80
contains at least one process block, though it may contain more. Each of the four virtual
processors contained in the AI-80 can be accessed by a collection of registers by using
the set data ">" and get data "?" commands.

For example, to read the program counter of process number 1, send the following
command:

?VN101<CR>[<LF>]

To read the status register for process number 4, send the following command:

?VN403<CR>[<LF>]

The register number is always a three digit number in the form of: xyy

 x = processor number from 1 to 4
 yy = register number

Each virtual processor has a group of registers than control program execution. The
following table lists these registers.

Register Syntax Access Description

Source VNx00 read only Source of program. If running from RAM, return -1.
If running from flash memory, return file number.

Program
Counter

VNx01 read only Returns processor program counter.

Stack Counter VNx02 read only Returns number of items placed on processor stack
Status VNx03 read only Returns program status: 0=stop, 1=running,

2=halted, other=error code
Suspend Time VNx04 read/write Number of milliseconds that the processor is

suspended for.
Breakpoint VNx05 read/write Program enters halt mode when the program

counter equals the value in this register.
Numeric

Accumulator
VNx06 read/write Numeric accumulator. Holds a 32 bit floating point

value.
String

Accumulator
VSx06 read/write String accumulator. Holds a string containing 0 to

64 characters. String is null terminated.
Numeric

Scratchpad
VNx07 read/write Numeric scratchpad register. Holds a 32 bit floating

point value.
String

Scratchpad
VSx07 read/write String scratchpad register. Holds a string containing

0 to 64 characters. String is null terminated.

13. Is there a summary list of all the AI-80 hardware properties?

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 10 Release 1

 AN006

Yes, the following table summarizes the hardware properties. For a description of each
property, consult the AI-80 User Guide.

ID ObjName PropName DataType DataAccess MinVal MaxVal
1 System UnitID string readonly

2 System SoftID string readonly

3 System HalID string readonly

4 System FfsID string readonly

5 System VtpID string readonly

6 System ParamID floating

7 System ParamTYPE floating readonly

8 System ParamGetNum floating readonly

9 System ParamGetStr string readonly

10 System Reset floating writeonly

11 System Init floating writeonly

12 System HvSup floating

13 System VTrim floating 0 15

108 System Options floating readonly

166 System HaltCmds floating

109 File IDlow floating

110 File IDhigh floating

111 File Exist floating readonly

14 Comm Init floating writeonly

15 Comm Baud floating writeonly 0 4

16 Comm RxCount floating readonly

17 Comm GetByte floating readonly

18 Comm SendByte floating writeonly 0 255

132 Comm SendString string writeonly

19 Comm RxStatus floating readonly

20 Comm TxFree floating readonly

103 Comm CTS floating writeonly

104 Comm RTS floating readonly

21 Display SegmentA floating writeonly 0 255

22 Display SegmentB floating writeonly 0 255

23 Display SegmentC floating writeonly 0 255

24 Display SegmentD floating writeonly 0 255

25 Display Blink floating writeonly 0 5000

26 Display Led floating writeonly 0 1023

27 Display LedOn floating writeonly 1 3

28 Display LedOff floating writeonly 1 3

29 Display Num floating writeonly

30 Display DP floating writeonly 0 3

31 Key Start floating readonly

32 Key Pause floating readonly

33 Key Stop floating readonly

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 11 Release 1

 AN006

34 Key Up floating readonly

35 Key Down floating readonly

36 Timer System floating 0 10000

37 Timer Slow floating 0 10000

38 Timer Fast floating 0 100

112 Timer OnHook floating

113 Timer OffHook floating

39 TelInt PortB floating

40 TelInt Current floating

41 TelInt Reverse floating

42 TelInt LineImp floating

43 TelInt OSI floating

44 TelInt HookDetect floating readonly

105 TelInt Balance floating readonly

106 TelInt Length floating

107 TelInt MeasPoint floating

45 CPE HookSwitch floating

47 Ring Freq floating 10 100

48 Ring Level floating 0 80

49 Ring Enable floating

50 ToneB Freq floating 20 10000

51 ToneB Level floating 0 4

52 ToneB Enable floating

53 ToneB Phase floating 0 360

54 Noise Level floating 0 2

55 Noise Enable floating

56 ToneA Enable floating

57 ToneA Freq floating 20 10000

58 ToneA FreqMark floating 20 10000

59 ToneA Level floating 0 4

60 ToneA LevelMark floating 0 4

61 ToneA BitTimeSpace floating 0 1

62 ToneA BitTimeMark floating 0 1

63 ToneA FskBitIndex floating 0 4096

64 ToneA FskNumBits floating readonly

65 ToneA FskContinuous floating

66 ToneA FskHoldCarrier floating

67 ToneA Modulation floating 0 2

68 ToneA AmDepth floating 0 100

69 ToneA FskActive floating readonly

70 ToneA Phase floating 0 360

71 Data Clear floating writeonly

72 Data Parity floating 0 2

73 Data StopBits floating 1 100

74 Data AddMark floating writeonly 0 4096

75 Data AddSpace floating writeonly 0 4096

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 12 Release 1

 AN006

76 Data AddAlternate floating writeonly 0 4096

77 Data AddByte floating writeonly 0 255

78 Data AddChar floating writeonly 0 255

79 Data AddString string writeonly

80 Data AddXsum floating writeonly

81 Data XsumEnable floating

82 Data XsumType floating 0 1

83 Data XsumValue floating 0 65535

84 Measure Source floating

85 Measure Smoothing floating

86 Measure Level floating readonly

87 DTMF Enable floating

88 DTMF Source floating

89 DTMF Digit floating readonly

90 DTMF FreqTol floating 0 2

91 DTMF FreqTime floating 0 20

92 DTMF MinLevel floating

93 DTMF LowFreq floating readonly

94 DTMF LowLevel floating readonly

95 DTMF HighFreq floating readonly

96 DTMF HighLevel floating readonly

46 Speaker Volume floating 1 4

97 Speaker SignalGain floating 0 10

98 Speaker TelIntGain floating 0 10

99 Speaker CPEGain floating 0 10

100 Speaker BeepFreq floating 100 5000

101 Speaker BeepTime floating 1 10000

102 Speaker BeepEnable floating

114 MFGen Index floating

115 MFGen Value floating

116 MFGen Level floating 0 4

117 MFGen FreqAdjust floating -20 20

118 MFGen OnTime floating

119 MFGen OffTime floating

120 MFGen Symbol floating writeonly 0 20

121 MFGen String string

122 MFGen Active floating

123 IO DeviceID floating readonly

124 IO Version floating readonly

125 IO Name string readonly

126 IO Serial string readonly

127 IO MemRegister floating

128 IO MemWriteNum floating writeonly

129 IO MemWriteString string writeonly

130 IO MemReadNum floating readonly

 A D V E N T I N S T R U M E N T S I N C .
 A P P L I C A T I O N N O T E

 May 2004 Page 13 Release 1

 AN006

131 IO MemReadString string readonly

133 IO AinChannel floating 1 4

134 IO AinLevel floating readonly

135 IO AinCompare floating readonly

136 IO AudioOut floating 0 5

137 IO AudioIn floating

138 IO AudioMix floating

139 IO DOut floating 0 255

140 IO DIn floating readonly

141 IO BitSet floating writeonly 1 15

142 IO BitClear floating writeonly 1 15

143 IO BitInput floating 1 24

144 IO GetBit floating readonly

145 IO DcLevel floating readonly

146 IO DcTrigger floating

147 IO DcTime floating 0 1

148 IO DcCalibrate floating

149 IO PMode floating 0 4

150 IO PTime floating readonly

151 IO PulseMode floating 0 5

152 IO PulseCount floating 0

153 IO PulseGate floating 0

154 IO PulseDuration floating 0

155 IO PulseFreq floating 0.05 100000

156 IO PWM1 floating 0 1023

157 IO PWM2 floating 0 1023

158 IO CommBaud floating 0 4

159 IO CommParity floating 0 2

160 IO CommSendByte floating writeonly

161 IO CommSendString string writeonly

162 IO CommTxEmpty floating readonly

163 IO CommRxCount floating readonly

164 IO CommRxError floating readonly

165 IO CommGetByte floating readonly

167 FSK Active floating

168 FSK Source floating 0 1

169 FSK LastByte floating

170 FSK MarkTime floating

171 FSK Count floating 0 700

172 FSK Index floating 1 700

173 FSK ByteValue floating readonly

174 FSK ByteTime floating readonly

175 FSK ByteStatus floating readonly

