

aiDevices Framework

Programming Guide

Advent Instruments Inc.

Release 1.1.16a

Copyright 2012 - Advent Instruments Inc. All rights reserved.

Printed in Canada

Advent Instruments Inc.
111 - 1515 Broadway Street
Port Coquitlam, BC, V3C6M2
Canada

Internet: techsupport@adventinstruments.com
 sales@adventinstruments.com

Web Site: http://www.adventinstruments.com

Telephone: (604) 944-4298
Fax : (604) 944-7488

Advent Instruments Inc. Introduction

Contents

1. Introduction 4
1.1. Document Scope 5
1.2. Related Documents 5
1.3. Document Organization 6
1.4. Documentation Conventions 7

2. What’s New in This Version 9

3. Project Roadmap 10

4. Installation and Dependencies 11
4.1. Microsoft .Net Framework 3.5 11
4.2. USB Drivers 11
4.3. Firmware Versions 11
4.4. Files Included 11

5. Versioning and Compatibility 12

6. XML Documentation 13

7. Programming Guidelines 14
7.1. Immutable Descriptor Objects 14
7.2. ToString Overloads 14
7.3. Thread Safety 15

8. Device Class Fundamentals 16
8.1. Common Members 16
8.2. Device Support Objects 18
8.3. Determining Instrument Capabilities 18
8.4. Establishing Communications 20
8.5. Discovering Communication Mediums 21
8.6. Terminating Communications 22
8.7. Resetting to Default Settings 23

9. Instrument Time Management 24
9.1. Time Stamps and Timing Calculations 25

10. Notifications 26
10.1. Notification Objects 27
10.2. Handling Notifications 31

aiDevices Framework Programming Guide i

Introduction Advent Instruments Inc.

11. Exception Handling 33
11.1. aiDeviceException 33
11.2. Automatic Communication Suspension 33
11.3. Passive Exception Reporting Mechanisms 34
11.4. Exception Conditions and Behaviors 35

12. Debugging and Tracing 37
12.1. Communication Trace 37
12.2. Debug Forms 39
12.3. Debug Trace Files 41

13. Descriptor Classes 42
13.1. Quantities, Units, and Measures 42
13.2. Impedances 50
13.3. Filters and Signal Filtering 51
13.4. Telephone Line State 53
13.5. Telephone Line Polarity 54

14. Signal Descriptor Classes 55
14.1. Interfaces and Signal Categorization 55
14.2. Signal Descriptors and Inheritance Patterns 56
14.3. Wave Shape 58
14.4. Cadence 59
14.5. Tones 61
14.6. Multi-Tone Signals 63
14.7. Multi-Tone Sequence 64
14.8. Dual-Tone Signals 65
14.9. Dual Tone Multiple Frequency Signals 66
14.10. CAS/DTAS Signals 69
14.11. Metering Pulse Signals 71
14.12. Ringing Signals 72
14.13. Telephone Line State Changes 74
14.14. Telephone Line Reversals 75
14.15. Line Flash Signals 76
14.16. Open Switching Interval (OSI) Signals 77
14.17. Pulse Dialing Signals 79
14.18. Frequency Shift Keying (FSK) Signals 80
14.19. Checksum Calculations 84

15. Caller ID (FSK) Classes 85
15.1. Caller ID Transmission 86
15.2. Caller ID Date and Time 90
15.3. Caller ID Message Formats 91
15.4. TIA Messages 96
15.5. ETSI Messages 97

16. Device Support Classes 99
16.1. Signal Generators 99
16.2. Signal Detectors 109
16.3. Wait Manager 111
16.4. Detected Signal List 113

aiDevices Framework Programming Guide ii

Advent Instruments Inc. Introduction

16.5. Time Manager 115
16.6. Telephone Interfaces 115
16.7. Recording and Downloading 117

17. AI-5620 TE Simulator 119
17.1. Establishing Communications 120
17.2. Terminating Communications 121
17.3. Resetting to Default Settings 121
17.4. Determining Instrument Capabilities 122
17.5. Signal Routing and Processing 123
17.6. Telephone Interface 125
17.7. Meter and Measurements 128
17.8. Instrument Status 130
17.9. Signal Generation 131
17.10. Signal Detection 133
17.11. Instrument Time 135
17.12. Waiting 136
17.13. Digital I/O 136
17.14. Instrument Protection 137

18. AI-7280 CO Simulator 139
18.1. Establishing Communications 140
18.2. Terminating Communications 141
18.3. Resetting to Default Settings 141
18.4. Determining Instrument Capabilities 142
18.5. Signal Routing and Processing 142
18.6. Telephone Interface 144
18.7. Meters and Measurements 147
18.8. Instrument Status 148
18.9. Signal Generation 149
18.10. Signal Detection 152
18.11. Recording 153
18.12. Instrument Time 153
18.13. Waiting 153
18.14. Digital I/O 154
18.15. Protection Mechanisms 155

19. Terminology and Definitions 156

20. Revision History 159

21. Technical Support 162

aiDevices Framework Programming Guide iii

Introduction Advent Instruments Inc.

1. Introduction

The aiDevices framework represents the second generation Application Programming
Interface (API) for automating and controlling Advent Instruments hardware products
from a .Net programming environment. Unlike simplistic C-style drivers, this .Net
assembly exposes a feature rich network of classes which enable application developers
to write fine-tuned applications without sacrificing code clarity or flexibility.

At its core the aiDevices framework contains a set of device classes which communicate
with and manage the features of Advent Instruments’ hardware products. These classes
provide an abstract interface which allows applications access the rich feature set of each
instrument.

To make things easier, the aiDevices framework also contains a periphery of supporting
classes which make constructing, generating, and analyzing complicated signals very
straight forward. These classes manage representations of physical quantities, complex
impedances, signal level representations and even perform automatic conversion between
different representations. The framework is capable of automatic Caller ID message
construction and decoding based on industry standard formats while still enabling
applications to customize down to the bit level.

The aiDevices project is coded to take full advantage of the powerful object-oriented
programming features of the .Net environment. Re-usable device support classes results
in abstract code which can be easily ported between instruments. The multi-threading
features are utilized to produce “smart” objects which manage the details of generating
and detecting complicated signals in the background while parent application code tends
to other tasks. Delegation is also leveraged to deliver asynchronous information to
applications which can be written using an event-driven structure.

This manual provides a detailed guided tour through the vast majority of the classes,
features, and behaviors of the aiDevices assembly.

aiDevices Framework Programming Guide 4

Advent Instruments Inc. Introduction

1.1. Document Scope
This manual is intended to serve as a primer for project managers and application
developers to design successful applications that interact with Advent Instruments
hardware products through the aiDevices framework.

While great care has been taken to ensure this document can be read by non-
programmers, the vast majority of this document assumes the reader is experienced or at
least familiar with most basic and some advanced object oriented programming
concepts; especially as they pertain to .Net programming languages. These concepts
include:

• Classes, inheritance, sub-classing, and class diagrams
• Delegation
• Abstraction
• Polymorphism
• Multi-threading

Readers are also expected to have a basic understanding of circuit theory and some
analog telephony concepts.

This document is not intended to be an exhaustive API reference for each class within the
assembly but rather a guide book to direct developers to the correct features of the
aiDevices assembly. For specific documentation on particular classes, functions, or
parameters please refer to the XML documentation described in section 6. This
documentation is distributed with the assembly and appears automatically within Visual
Studio.

1.2. Related Documents
The contents of this document pertain to the aiDevices framework and its interoperation
with Advent Instruments products. For instrument specific documentation, the reader is
referred to the following documents which are available at www.adventinstruments.com.

¾ AI-5620 User Guide – contains AI-5620 product overview, USB driver
installation, and performance specification.

¾ AI-7280 User Guide – contains AI-7280 product overview, USB driver
installation, and performance specification.

aiDevices Framework Programming Guide 5

http://www.adventinstruments.com/

Introduction Advent Instruments Inc.

1.3. Document Organization
General Information
¾ Introduction – a general introduction to the assembly and this manual

¾ Project Roadmap – information about the future direction of the aiDevices
project

¾ Versioning and Compatibility – information regarding the version numbers and
compatibility issues

¾ XML Documentation – information about the XML documentation distributed
with the assembly.

¾ Programming Guidelines – rules and tips regarding programming styles and
design patterns used throughout aiDevices

Device Classes
¾ Device Class Fundamentals – reference for features and behaviors common to

all classes that manage instruments

¾ Instrument Time Management – describes how timing is managed within
instruments and the supporting software

¾ Notifications – contains documentation for the behavioral pattern used to report
asynchronous information to parent applications

¾ Exception Handling – documents how exception conditions are handled
throughout the framework

¾ Debugging and Tracing – describes the debugging and tracing features built into
each device class.

Common Classes and Concepts
¾ Descriptor Classes – describes the supporting cast of descriptor classes which

are used throughout the framework

¾ Signal Descriptor Classes – describes the set of classes devoted to describing
signals which can be generated or detected by instruments

¾ Caller ID (FSK) – describes the set of classes devoted to describing Caller ID
messages based on FSK signaling.

¾ Device Support Classes – describes the set of classes which are reused by
several different instrument’s device classes to implement particular
features

Instrument Specific Classes
¾ AI-5620 TE Simulator – documents the classes specific to the AI-5620

¾ AI-7280 CO Simulator – documents the classes specific to the AI-7280

Reference
¾ Terminology – contains a list of terms and definitions which are commonly used

within this manual and the aiDevices framework.

aiDevices Framework Programming Guide 6

Advent Instruments Inc. Introduction

1.4. Documentation Conventions

1.4.1. Language, Style, and Normative Terms
This document is intended as a guide for project managers and developers to design
successful applications with aiDevices. It is intended to be easy to read and uses a
mixture of colloquial examples and formal language. When required, this manual will
convey recommendations and requirements using the following normative language:

• Must, Must Not – these terms indicates strict rules. Non-compliance with such
statements may result in serious errors or malformed applications.

• May, Should, Can – these terms indicate an optional requirement and should
be treated as a guideline.

Some statements will be written in bold faced text to draw attention to important
distinctions of relative importance.

1.4.2. Code Examples
The document includes may code snippets in C# and VB.net which are used to convey
information relevant to the section in which they are found. Please note:

• All code examples are only short snippets of code and are not expected to
function as complete programs. Several examples show multiple examples of
the same operation and are not expected to execute sequentially.

• Some variable declarations may be omitted for the sake of brevity. Variables
with names like _7280 are assumed to be of a type which is associated with an
instrument of matching product number (in this case AI7280_CO_Simulator).

• Exception handling is omitted for the sake of clarity. Application developers
should always write programs with suitable try/catch statements.

Each snippet of example code will appear as shown below.

Example:

// C# examples will appear within this style of box
// All examples assume the following statements…

using System;
using Advent.aiDevices;

Example:

' VB.Net examples will appear within boxes like
' All such examples assume the following statements…

Imports Advent.aiDevices

aiDevices Framework Programming Guide 7

Introduction Advent Instruments Inc.

1.4.3. Warnings and Notes
Important information will be highlighted within the documentation using one of the
formats demonstrated below.

This format identifies important information or a tip which is important in
understanding either the software or further documentation

This format is used to convey information which is vital to constructing a successful
application. This may highlight a feature or requirement which may not be immediately
obvious

This format is used to convey serious warnings. If you do not heed the instructions
in these boxes you may risk serious application errors and possible damage to the
connected instrument.

This format is used to indicate a potential compatibility issue or information on future
features being considered that may affect application designs.

aiDevices Framework Programming Guide 8

Advent Instruments Inc. What’s New in This Version

2. What’s New in This Version

The following sections highlight any significant changes between the latest version of the
assembly (to which this document applies) and the previous assembly version. Please see
Section 20 for a complete and detailed project revision history

2.1. ArraySampleWritter class (Version 1.1.1)
The ArraySampleWriter class was added (in Version 1.1.1) which allows recorded
samples to be downloaded into arrays (instead of only .wav files). Please see the xml
documentation for information on the public interface.

2.2. SignalGenerator.IsBusy (Version 1.1.2)
All Signal generators now have an IsBusy property which indicate if the signal generator
is either

• Scheduled to generate a signal, or

• Generating a signal

This property helps applications determine if a call to Generate() will fail without
needing to deal with Notifications

2.3. AI-7280 Expanded DC Feed Support (Version
1.1.8)

aiDevices now supports the expanded DC Feed option which may be installed on AI-
7280 models which allows the DC voltage and current to range up to 105 Volts and 105
milliamps respectively.

aiDevices Framework Programming Guide 9

Project Roadmap Advent Instruments Inc.

3. Project Roadmap

The aiDevices framework is by no means a static project. At Advent Instruments we are
constantly working to improve our software and hardware products and integrate new
features; largely in response to customer feedback. As a result aiDevices will continue to
change and expand over time, and while we cannot anticipate every possible feature, the
following list outlines some features we plan to support in future releases:

• Support for the AI-5120 Telephone Line Monitor instrument

• Limited access to instrument flash file systems

• Support for abstract signal generation sequences

• Support for scripting

• Support for saving and restoring instrument states

• Native support for DTMF Caller ID, NTT Caller ID

• Support for SMS messages

• Support for FSK dropouts and other impairment generation

• Support for custom filters

• Support for AI-5620 recording and playback

• Support for AI-7280 playback

If you require a particular feature which is not addressed by aiDevices or have any
suggestions to improve the existing software please do not hesitate to contact us at
www.adventinstruments.com or any means listed in the Technical Support section.

aiDevices Framework Programming Guide 10

http://www.adventinstruments.com/

Advent Instruments Inc. Installation and Dependencies

4. Installation and Dependencies

4.1. Microsoft .Net Framework 3.5
The aiDevices framework is based on the Microsoft .Net Framework 3.5 which is
available for download from Microsoft’s website. This framework must be installed
before any of the assemblies or example programs will function.

4.2. USB Drivers
USB drivers may need to be installed in order to communicate with Advent Instruments
hardware products. Please refer to the product specific documentation listed in section 1.2
for proper driver installation procedures.

4.3. Firmware Versions
Each device class within the aiDevices project may require a minimum firmware version
to be installed in the associated instrument. Each Advent Instruments product can be
easily upgraded to the latest firmware version using the firmware update utility which can
be downloaded from www.adventinstruments.com. Please refer to the product specific
documentation listed in section 1.2 for proper firmware update procedures.

4.4. Files Included
The following files are included with the aiDevices framework:

¾ aiDevices.dll – this is the primary assembly which contains all the device
classes and supporting classes and should be referenced by applications.

¾ aiDevices.xml – this file contains the API documentation which will appear
automatically within Visual Studio. Application developers should place this file
in the same directory as the assembly in order to view the documentation within
Visual Studio.

aiDevices Framework Programming Guide 11

http://www.adventinstruments.com/

Versioning and Compatibility Advent Instruments Inc.

5. Versioning and Compatibility

The .Net framework defines two separate version numbers which are included in each
assembly.

• Assembly Version – this version is actually used by the common language
runtime to determine the “correct” version to link to a particular application

• File Version – this version is not used by the language runtime but is visible in
the file properties through the Windows file properties.

Each version is composed of four numbers in the format

 <Major>.<Minor>.<Build>.<Revision>

The aiDevices project will

1. Zero the revision number.

2. Synchronize the Major and Minor versions for all releases so the assembly
version can be determined from Windows file properties.

3. Increment the Build number of the File Version for each “transparent” change
that does not require dependent applications to be recompiled (such as a bug fix)

4. Increment the assembly version for changes which require dependent
applications to be re-compiled.

5. Increment the major version for changes which modify framework features or
integrate a significant number of new features.

Application developers are urged to recompile each dependent project when upgrading
to a new version of aiDevices.

aiDevices Framework Programming Guide 12

Advent Instruments Inc. XML Documentation

6. XML Documentation

The number of classes, methods and properties within aiDevices are far too numerous to
make an exhaustive API reference manual economical. Instead documentation for each
class, member, function, and property is available through the XML documentation
feature in Visual Studio. This documentation has been carefully maintained during the
development process and will track all changes to the project. The XML documentation
is distributed along with the assembly in the file aiDevices.xml.

To enable XML documentation place the aiDevices.xml file is in the same directory as
the aiDevices assembly referenced by your project. Also be sure to update this xml file
whenever updating the assembly to ensure the documentation is correct.

When selecting properties or methods using auto-complete a description of the method or
property will appear as shown below.

Descriptions for each function argument will also appear as you type which give you an
idea of their proper usage.

Descriptions of variables and classes will also appear when you mouse over variables or
code segments as shown below.

The XML documentation also appears in the Object Browser window which is a very
handy tool to browse all the available features of an assembly.

aiDevices Framework Programming Guide 13

Programming Guidelines Advent Instruments Inc.

7. Programming Guidelines

The following sections highlight some general requirements and expected usages which
are not always obvious from the source code or API documentation. Proper
understanding of these requirements is essential in order to develop robust applications

7.1. Immutable Descriptor Objects
Many of the classes within the framework are used as “descriptors” in that they are a
placeholder which represents a particular entity or configuration. Some of these classes
include:

• Signal definitions documented (see section 14)

• Quantity and measure definitions (see section 13.1)

• Communications medium descriptors (see section 8.5)

Unless specifically stated to the contrary, all descriptor objects are “immutable” which
means that their members cannot be modified after they are created. At first glance this
may seem an imposing restriction however one must consider the consequences imposed
by multi-threading and multiple object references. By enforcing this simple restriction
each descriptor can be safely referenced by multiple classes simultaneously (possibly on
separate threads) or used as a base class without concern for member values changing.
Typically when a different descriptor is required it is straight forward to create another
either through a constructor or operator.

7.2. ToString Overloads
Nearly every class within the aiDevices framework overloads the ToString function and
will return a well formatted description of the object or whatever the object represents.
For example the SignalLevel class will actually print out the signal level in SI units (i.e.
“1.25 dBm”). This behavior can be very handy when debugging, update status displays,
or when adding objects to controls like combo boxes which typically display the ToString
value.

.

aiDevices Framework Programming Guide 14

Advent Instruments Inc. Programming Guidelines

7.3. Thread Safety
Most of the classes within the aiDevices framework are designed from their inception to
operate in a multi-threaded environment. However application developers must be very
careful to note some of the key limitations within the project with respect to multi-
threading. The core communications system within device classes is completely thread-
safe and allows low-level communication transactions to be issued from multiple threads
simultaneously. This ability allows each device object to interact with the connected
instrument in parallel (from worker threads) without interfering with the application
software as illustrated below.

Application developers should note however that device classes and device support
classes themselves are not inherently thread-safe with respect to the parent
application (as most public methods access internal member variables).

Application developers must adhere to the following threading rules and guidelines
(unless explicitly specified otherwise).

1. Separate device objects can be created and managed on completely separate
threads without conflict. Device objects can be considered to be independent
entities and share no common internal references.

2. A device object may be accessed on threads other than the one on which it was
created; however the parent application must limit access to exactly one
thread at a time.

3. Notifications (see section 10) are always delivered on a different thread than the
one used to create a device object. If applications choose to respond to
notifications they must ensure exclusive access to the device object and all
supporting objects before accessing any members.

Concurrent access of a device object or support objects members may result in
erratic operation and/or serious application errors.

aiDevices Framework Programming Guide 15

Device Class Fundamentals Advent Instruments Inc.

8. Device Class Fundamentals

Each instrument supported by the aiDevices framework is managed by a class with a
representative name (i.e. AI7280_CO_Simulator). These classes are referred to
collectively as “device classes” (instances are “device objects”) within the framework
and this documentation. Each device class is responsible for:

• Establishing, managing, and terminating communications with the instrument.

• Automatically synchronizing with the instrument and maintaining the instrument
state.

• Automatically retrieving key status information from each instrument which is
made available without latency.

• Manage instrument resources to prevent and report any potential conflicts.

• Expose a set of supporting objects which implement the instrument’s features
and provide the majority of the public interface. Manages ASCII based
command/response transactions

• Exposes a communications trace and debugging methods which allow
applications to gain visibility into problems or performance issues.

Device classes have no publicly accessible constructors and can only be created through
a successful call to a static Connect method (see section 8.4).

8.1. Common Members
Devices classes make extensive use of inheritance to incorporate common features and
this common ancestry also ensures consistent behavior and a uniform interface for basic
instrument properties. Most device classes expose the following members

• Connect – these static functions will search for and connect to instruments and
return the corresponding device object (see section 8.4).

• Close – this method will immediately terminate communications and release any
internal resources associated with communications (see section 8.6.1).

• CloseAndReset – this method will immediately termination communications
and issue a hardware reset command (see section 8.6.2)

• DeviceModel – returns an object which describes the model of the connected
instrument.

• SerialNumber – returns the serial number of the connected instrument. If the
serial number is not known it will return null.

aiDevices Framework Programming Guide 16

Advent Instruments Inc. Device Class Fundamentals

• UnitID – returns an object which represents the unique ID number for the
connected instrument.

• Info - returns basic information regarding the instrument’s hardware and
firmware versions.

• FirmwareVersion – returns a descriptor containing information regarding the
instrument’s firmware version (if known). If the firmware version could not be
determined this will return null/nothing.

• ConnectedVia – returns the communication medium descriptor that describes
the medium on which the instrument is connected (see section 8.5).

• IsConnected – returns true if communications are established with an
instrument. (Note: This may return true if communication are established but
suspended due to an exception condition)

• IsCorrupted – returns true if a serious configuration problem has been detected
within the instrument (such as missing or invalid calibration information). If this
is the case communications will also typically be halted.

• IsActive – returns true so long as communications are established and have not
been suspended due to an exception condition. If this returns false a serious
problem may have occurred and applications should check the passive exception
reporting mechanisms listed in 11.3 or the communications trace to determine
the nature of the issue.

• SupportedBaudRates – if the instrument associated with the device class is
capable of COM port (RS-232) communication then this will return a list of
supported baud rates, otherwise this will return an empty list.

• ChangeToBaudRate – if the instrument associated with the device class is
capable of COM port communications then this method will change the baud
rate to the value specified.

• ChangeToMaximumBaudRate – If the instrument associated with the device
class is capable of COM port communications then this method will change the
baud rate to the maximum supported value.

• Exceptions – returns a list of exceptions which have been passively reported by
the device class (see section 11.3). This list should be checked when exception
conditions are detected.

• DebugTraceFileName – This is the default file name used by the
WriteDebugTraceFile method.

• WriteDebugTraceFile – this set of methods will write debug and trace
information to a text file which can then be used by Advent Instruments to fix
problems or performance issues.

• Trace – this exposes the communications trace object through which application
developers can insert items into the communications trace which will appear in
debugging files and in trace windows (see section 12).

• NotificationRecipient – this specifies a delegate to which notifications will be
delivered. Great care must be taken when accessing this property (see section
10).

• ResetToDefaultSettings – this method will reset all instrument settings back to
default settings (see section 8.7).

aiDevices Framework Programming Guide 17

Device Class Fundamentals Advent Instruments Inc.

8.2. Device Support Objects
While each instrument is represented by a device class, these classes do not directly
manage many features aside from basic communications and exception handling. Once
communications are established, applications will interact almost exclusively through
supporting objects which manage the instrument’s features and are accessed through
read-only properties of the device object (see section 16 for information on common
support classes). Each supporting class is typically responsible for managing a single
feature of an instrument. For application developers this design yields the following
benefits:

• New features can be added to device classes by adding new support objects
without affecting any existing code

• Support classes logically separate and group sets of features and functionality.
The resulting application code is much easier to read and write.

• Device classes with similar capabilities reuse the exact same support classes (for
example nearly every instrument supports tone generation through instances of
the ToneGenerator class). This means code written for one device can be easily
abstracted or ported to another device with the same support objects.

8.3. Determining Instrument Capabilities
Most device classes implement a Capabilities property which returns an object that
reports the collective capabilities of the instrument’s hardware, firmware, and the device
class. This capability reporting mechanism enables applications to

• Discover the particular abilities of a device object in an abstract manner.

• Automatically take advantage of improvements or changes in instrument
functionality

• Avoid “parameter out of range” exceptions.

The capabilities of hardware, firmware, and the aiDevices software may change
with different versions (generally to improve performance). By writing applications
which reference this capabilities object they can avoid future “hardcoded”
problems when capabilities change!

Example:

' Sweep a tone over the maximum supported frequency range
Const NumPoints As Integer = 10
With _7280.Capabilities ' Access capabilities info
 For i = 0 To NumPoints
 Dim F = i * ((.ToneMinFrequency + .ToneMaxFrequency) / NumPoints)
 _7280.ToneA.Frequency = F
 Next

End With

Each type of capabilities class will report information in a consistent format for each type
of capability being reported. The following sections outline the common capabilities
which can be reported. Instrument specific capabilities are documented in the
corresponding device class section.

aiDevices Framework Programming Guide 18

Advent Instruments Inc. Device Class Fundamentals

8.3.1. Tone Generator Capabilities
The tone generation capabilities are always reported by capabilities objects using the
following properties:

• ToneLevelMaximum – reports the maximum possible signal level for each tone
generator

• ToneFrequencyMinimum / ToneFrequencyMaximum –reports the range of
frequencies which can be produced by a tone generator

8.3.2. FSK Generator Capabilities
The FSK generation capabilities are always reported by capabilities objects using the
following properties:

• FSKTransmitterBitsMaximum – reports the maximum number of consecutive
FSK bits which can be transmitted

8.3.3. Noise Generator Capabilities
The white noise generator capabilities are always reported by capabilities objects using
the following properties:

• NoiseLevelMaximum – reports the maximum possible signal level for the white
noise generator

8.3.4. Echo Generator Capabilities
The echo generator capabilities are always reported by capabilities objects using the
following properties:

• EchoDelayMinimum / EchoDelayMaximum – reports the supported range of
echo delays for each tap

• EchoGainMinimum / EchoGainMaximum – reports the supported range of
echo gains for each tap

• EchoTapsMaximum – reports the maximum number of echo taps for the echo
generator

8.3.5. Ring Generator Capabilities
The ringing generator capabilities are always reported by capabilities objects using the
following properties:

• RingDCMinimum / RingDCMaximum – reports the range of acceptable range
of DC offsets which can be produced by the generator

• RingFrequencyMaximum / RingFrequencyMinimum – reports the range of
acceptable frequencies that can be produced by the generator.

• RingLevelMaximum – reports the maximum signal level which can be
produced by the ringing generator.

aiDevices Framework Programming Guide 19

Device Class Fundamentals Advent Instruments Inc.

8.4. Establishing Communications
Each device class contains a set of static Connect functions which establish
communications with the corresponding instrument and returns an instance of the device
object which can then be used to control the instrument.

Each Connect function will behave as follows:

• If an instrument is found which is supported by the class and communications
are established successfully, then an instance of the device object will be created
and returned. This object can then be used to interact with the instrument.

• If no supported instruments are found then null/nothing is returned.

• If an instrument is found but communications are not established correctly or the
instrument is not supported by the software then the function will raise an
Exception which must be handled by the calling application.

The aiDevice base class contains a special variant of the Connect functions in that

• Each aiDevice Connect function will connect to any supported instrument
and return an instance of the handling class. This is especially useful when
attempting to connect to multiple types of instruments without regard to order.

Each device class defines three variants of the static Connect function.

• .Connect() – this will connect to any instrument which is supported by the
device class.

• .Connect(String SerialNumber) – this will connect to a device supported by
the class name with the serial number specified.

• .Connect(CommunicationMediumDescriptor m) – this will connect to any
available device supported by the device class which is connected on the
communication medium specified by the descriptor.

Examples:

//Connect to any avilable AI-7280
AI7280_CO_Simulator CO = AI7280_CO_Simulator.Connect();

//Connect to the AI-5620 with a specific serial number
AI5620_TE_Simulator TE = AI5620_TE_Simulator.Connect("SN140059");

// Connect to any device connected on COM 1
aiDevice Dev = aiDevice.Connect(new ComPortDescriptor("COM1"));

aiDevices Framework Programming Guide 20

Advent Instruments Inc. Device Class Fundamentals

8.5. Discovering Communication Mediums
Each device class exposes a static function called AvailableCommunicationsMediums
that returns a list of descriptors which correspond to the available communication
mediums compatible with that particular device class at the instant when the function was
called. The aiDevice base also class exposes a special version of this function which
returns the list of descriptors that are compatible with any supported instruments. Each
communication medium descriptor derives from the CommunicationMediumDescriptor
class and occurs in two types:

• USBDescriptor – describes an available instrument connected on USB. Note:
the serial number and model description are also reported by this class.

• ComPortDescriptor – describes an available COM (RS-232) port on the host
computer.

These descriptor objects can then be supplied to the static Connect methods for device
classes to attempt to establish communications on that medium.

Example:

// search through each available communication medium
foreach (CommunicationMediumDescriptor m in
 aiDevice.AvailableCommunicationMediums)
{

try
 { // attempt to connect to any instrument
 if ((Dev = aiDevice.Connect(m)) != null) break;
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error while connecting:" + ex.Message);
 }
 if (Dev != null)

 MessageBox.Show("Connected to " + Dev.ToString());
 else

 MessageBox.Show("No instruments found");

}

aiDevices Framework Programming Guide 21

Device Class Fundamentals Advent Instruments Inc.

8.6. Terminating Communications
Once an application has finished using a device object it must call one of the Close
methods before setting the object variable to null. The Close methods will terminate
communications immediately and release internal resources within the device object.

Applications must call one of the Close methods before setting a device object
variable to null! Failing to call a close method will cause the device object to not shut
down properly and will not release communication resources associated with the
instrument until your application is terminated!

After communications are terminated through any of the Close methods the instrument
will no longer be connected to the device object and cannot affect the instrument
behavior. However please note:

• The communications trace will remain until the object is actually destroyed
which allows for debugging after communications are terminated (see section
12).

• Many device object properties may still be accessed but will return default
values

8.6.1. Close
Each device class contains a Close method which can be used to terminate
communications. This method will:

• Release any internal resources within the device object and supporting objects.

• Terminate any automated behavior managed by the device object (tone patterns,
background tasks).

• Terminate communications with the instrument.

After the Close method is called communications can generally be immediately re-
established using a Connect method (see section 8.4).

The Close method will terminate automated behaviors but will not affect “static”
instrument settings and behaviors (such as telephone interface settings, basic tone
generators, and signal routing) in order to minimize the impact of Close on the behavior
of the instrument. Please note:

• Instruments settings can be configured with particular signal routing and
telephone interface settings (possibly required for a particular test
configuration) which will remain in place after Close is called.

• When a device object reconnects to the instrument it will synchronize with the
instrument and appear with most of the same settings that were present when
Close was called. This will prevent transient conditions on connection.

• If desired, the unit can be reset to default settings before close by calling
ResetToDefaults before Close or alternatively calling CloseAndReset

aiDevices Framework Programming Guide 22

Advent Instruments Inc. Device Class Fundamentals

8.6.2. CloseAndReset
Each device class exposes a CloseAndReset method which terminates communications
with the associated instrument in the same manner as the Close manner except:

• Just prior to terminating communications this method will issue a command
which will cause the connected instrument to perform a hardware reset that will
ensure the hardware and firmware are restored to the initial power-on state.

The hardware reset command issued by the CloseAndReset method has the following
effects:

• The hardware reset cycle will take a significant amount of time to complete
during which communications may not be able to be reestablished.

• The hardware reset cycle may cause a reset of the instrument’s USB controller
which may cause the device to “disappear” from the list of available devices
until the reset is complete and the host computer can re-enumerate the
instrument

If these behaviors are undesirable please consider using the Close method.

8.7. Resetting to Default Settings
In many applications it is desirable to reset the instrument settings to defaults in order to
return the device to a known operating condition. Each device object implements a
ResetToDefaultSettings method which will generally:

• Call the ResetToDefaults method of each support object. Please refer to each
particular support class specification for details.

• Stop all active signal generators and reset all generator settings to nominal
defaults

• Reset all detector settings to nominal defaults

• Reset all telephone interface settings to defaults.

• Reset all digital outputs to “Output Low” and disable all special functions

• Reset all signal routing, measurement settings, and filters to defaults

• Reset protection mechanisms within the instrument.

This ResetToDefaultSettings does not initiate a hardware reset of the instrument but
rather reconfigures the instruments with “safe” default values.

Most support objects also have a ResetToDefaults method which only affects the
settings relevant to one feature. This can be very helpful when needing to reset only
certain instrument features to defaults.

aiDevices Framework Programming Guide 23

Instrument Time Management Advent Instruments Inc.

9. Instrument Time Management

Each device object is responsible for establishing and maintaining a relative time base
with the connected instrument. This time base is then used:

• To record and report timing of events within the instrument or the device object
(such as signals being detected or generators starting/stopping)

• To schedule future actions

• To compare events reported by instruments to the host time or events reported
by other instruments.

In general, each device time base operates as follows:

• When communications are first established with an instrument

o A timer is simultaneously reset within the instrument and the device
object.

o The host time (wall time) is recorded.

o This instant in time is referred to as the device time epoch and
corresponds to device time of zero.

• All time information reported by the instrument is reported to the device object
in seconds relative to epoch. The device object then reports timing information
to the application using TimeStamp objects which report both the instrument
time and corresponding host time.

• The device object is responsible for maintaining synchronization between its
internal timer and the device timer and will periodically adjust for any slippage.

A simplified illustration of the time base system is show below.

Figure 1 Time Base Structure

aiDevices Framework Programming Guide 24

Advent Instruments Inc. Instrument Time Management

9.1. Time Stamps and Timing Calculations
All descriptions of a particular instant in time are managed by the TimeStamp class. Each
time stamp object exposes two properties that report timing information:

• DeviceTime –reports the instant in time in seconds relative to the device time
epoch.

• HostTime –reports the instant in time corresponding to the host time as a
DateTime structure.

• ToString – returns an easy-to-read device time format (i.e. “1m 6s 72ms”)

An illustration of the relationship between the host time, device time, time base, and
TimeStamp objects are illustrated below.

Figure 2 Device Time and Time Stamps

TimeStamp objects are primarily used in Notifications (section 10) and as arguments in
methods that support scheduling. The TimeStamp class also defines a set of operators
which make accurate timing calculations and comparisons very easy to implement.

All operations and comparisons using TimeStamp objects are abstracted such that even
time stamps reported from different devices can be compared against each other.

Example:

Dim Time1 As TimeStamp ' These must be created by aiDevices
Dim Time2 As TimeStamp

' Difference between time stamps
Dim Diff As TimeInterval = Time1 - Time2

' Can calcaulate other times by adding time intervals

Dim NewTime As TimeStamp = Time1 + TimeInterval.InSeconds(4)

aiDevices Framework Programming Guide 25

Notifications Advent Instruments Inc.

10. Notifications

Applications are able to configure and control instruments by means of methods and
properties exposed through the device object and its cast of supporting objects. The
notification system “closes the loop” by providing a mechanism to asynchronously report
information from the instrument back to the higher level application in a timely manner.

The term Notification is used within aiDevices to avoid confusion with events which
have their own meaning and usage within the .Net framework.

All asynchronous information is delivered from a device object to the application by
means of Notification objects. These notifications can convey information such as:

• Signals being detected (DTMF, CAS, FSK, etc)

• Actions that have occurred (signal generation complete, etc)

• Measurement information

• Exceptions that have occurred

This notification system

• Minimizes polling and other wasteful programming structures by delivering
information as soon as it’s available

• Enables applications to respond to detected signals and conditions with minimal
latency.

• Enables applications to be designed using an Event Driven Architecture (EDA)
which simplifies the code to simulate behaviors that may not be easily realized
in a top-down program structure.

aiDevices Framework Programming Guide 26

Advent Instruments Inc. Notifications

It is important to note that notifications are reported by an instrument as soon as the
corresponding event or information is available. Please note:

• Notifications from different detectors may appear out of temporal order with
respect to each other due to detection delays. For example: a DTMF digit may
be reported slightly after a metering pulse although they may have actually
occurred in the opposite order. The actual order of notifications should always
be determined by comparing the reported TimeStamp information if available.

• In general, notifications of signals of a similar signal type are reported in
temporal order

• Due to communication and processing delays, each notification may be slightly
delayed with respect to the event or information which caused it.

Please note that these notifications can be handled in a more simplistic manner
depending on the application requirements:

• To wait for a particular notification see section 16.3
• To record detected signals see section 16.4.

10.1. Notification Objects
Notification objects can be thought of as “memos” passed by the device object to a parent
application to inform it of important information. All notifications classes have
descriptive names which convey their meaning (similar the subject line of a memo) and
end with ‘Notification’ (For example: SignalDetectedNotification informs an application
that a signal has been detected). Notifications are intended to be informative in nature and
do not require any particular action on the part of handling applications. Applications
may choose to:

• Monitor notifications to detect particular sequences

• Detect particular notifications and take some action

• Ignore notifications altogether

Notification classes are immutable and organized by meaning and function through their
inheritance pattern. All notification objects are derived from the Notification abstract
base class and can thus be handled by the device notification system. This base class
exposes a signal Sender member which references the device object from which the
notification originated.

10.1.1. Exception Notification

The ExceptionNotification class is used to report internal exceptions to
applications in a timely manner. This class exposes the following
members:

• Exception – returns the exception which has occurred

Once communications are established, exception notifications can be generated at nearly
any time. See section 11 for more details on what conditions can cause these
notifications to be reported. Depending on the severity of the exception the device
object may no longer be able to communicate with the instrument!

aiDevices Framework Programming Guide 27

Notifications Advent Instruments Inc.

10.1.2. Signal Started Notification

The SignalStartedNotification class is used to inform an application
that the beginning of a signal has been detected. This class exposes the
following members:

• Time – returns a TimeStamp indicating the time at which the
start of the signal was detected

• Signal –returns an ISignal descriptor (see section 14)

This notification is useful when applications need to respond to signals
which may be very long in duration but cannot wait until the end of the
signal is detected.

The SignalStartedNotification object indicates that the start of a particular signal has
been detected. However:

• These notifications are not guaranteed to occur for all signals – especially for
those of very short duration.

• These notifications convey preliminary information about the signal in question
and disregard information such as duration (since it is generally not known).

• If a SignalStartedNotification is generated, a SignalDetectedNotification will
occur at a later time with an updated signal description that will contain
additional information such as duration.

10.1.3. Signal Detected Notification

The SignalDetectedNotification class is used to inform an application
that a particular signal has been detected and has completed. This
class exposes the following members:

• Time – returns a TimeStamp indicating the time at which the
start of the signal was detected

• Signal –returns an IDetectedSignal descriptor (see section 14)

This notification is the primary mechanism for reporting information to
applications from the signal detection features of instruments.

SignalDetectedNotification objects convey that a signal has been detected and has
completed. However:

• These notifications are only generated after the detected signal has finished.
• Signals of long duration may be preceded by a SignalStartedNotification which

conveys preliminary information regarding when the signal started and the
nature of the signal detected.

• Each fully detected signal is guaranteed to generate exactly one
SignalDetectedNotification which contains a complete set of measurements,
timing, and details related to the signal which was detected.

aiDevices Framework Programming Guide 28

Advent Instruments Inc. Notifications

10.1.4. Action Notification
In addition to signals that have been detected by the instrument, it is often crucial for an
application to be aware of the nature and timing of actions being performed by the
instrument itself (whether initiated directly or as a result of automated behavior). In
general such actions can include:

• Activation of a signal generator

• Deactivation of signal generator

• Change in telephone interface hook-switch or connection status

These notifications can be very useful to

• Schedule signals for transmission based on the relative timing of prior signals

• Monitor the current state of signal generation within the instrument

• Verify the timing of signals being transmitted

The ActionNotification class contains the following members:

• Time – returns a TimeStamp indicating the instant at which the action occurred.

• Action – returns an enumerated value which indicates the particular action that
occurred. Each enumerated value is descriptively named. Please see the relevant
XML documentation for more information.

Applications can also wait for ActionNotifications using the WaitManager (see section
16.3) in a much simpler manner.

aiDevices Framework Programming Guide 29

Notifications Advent Instruments Inc.

10.1.5. Protection Notification
ProtectionNotification objects are used to inform an application that an instrument has
detected a hazardous condition and has taken corrective action to prevent physical
damage to the instrument.

Upon reception of a ProtectionNotification object an application can assume that the
behavior of the instrument may not reflect the current settings or state expected by
the application program however the specific differences depend on the protection
mechanism that was invoked. These protection mechanisms can include:

• Disconnection of the telephone interface circuitry or terminations
• Disconnection of ringing loads
• Disconnection of AC termination circuitry

Each protection mechanism may make temporary changes to the instrument state which
will reset automatically while others may make long-lasting changes that must be
reset by the application software. Please see the device specific documentation for
specific details.

Regardless of the specific protection mechanism, the ProtectionNotification class exposes
the following properties which can be used by the application to determine the nature of
the error.

• Message – returns a description of the hazardous condition that was detected
and which action has been taken to protect the device.

• Action – returns an enumerated value which indicates the nature of the
protective action taken by the instrument (Note: not all devices will support all
actions listed). The supported values are:

o Telephone_Interface_Disconnected – indicates the telephone
interface of the instrument has been disconnected internally

o AC_Terminations_Disconnected – indicates that the AC termination
circuitry internal to the device has been disconnected from the
telephone interface

o Ringing_Loads_Disconnected – indicates that ringing loads have
been disconnected from the telephone interface

• Persistence – returns an enumerated value that describes how long the
protection mechanism will persist, and whether action must be taken to reset
the protection mechanism. The supported values are:

o Temporary – indicates that the protection mechanism is only
temporary and will be automatically reset after a suitable amount of
time has elapsed.

o Conditional – indicates that the protection mechanism will be
engaged so long as the hazardous condition persists. The mechanism
will automatically disengage once this condition is removed.

o Fixed – indicates that the protection mechanism will remain engaged
until the application takes application to reset this condition.

aiDevices Framework Programming Guide 30

Advent Instruments Inc. Notifications

10.2. Handling Notifications
Each device object within the aiDevices framework implements a very simple
notification delivery mechanism using a single delegate. Applications must “register” for
notification delivery by supplying a compatible function to a delegate property available
in each device object. Application code will appear in the following form:
DeviceObject.NotificationRecipient = AddressOfHandler

Notifications are always delivered on a thread other than the one on which the device
object was created. Application designers must take suitable precautions to avoid race
conditions or threading conflicts.

Notification information can be handled in a more simplistic manner depending on the
application requirements:

• To wait for a particular notification see section 16.3
• To record detected signals see section 16.4.

The following example demonstrates how an application can be structured which can
receive notifications and respond with some programmed action. In the following
example the AI-7280 CO simulator waits until the telephone line goes off hook and then
generates a tone. Note: This program assumes that only the OnNotification method
will access the _7280 object which prevents thread conflicts.

Example:

class Simulator
{
 AI7280_CO_Simulator _7280 = null;

 // Constructor
 public Simulator(){}

 // Connects to AI-7280 and registers for notifications
 public void Start()
 {
 Close();
 // Connect to any available AI7280 CO simulator
 _7280 = AI7280_CO_Simulator.Connect();
 if (_7280 == null) return;
 _7280.ResetToDefaultSettings();
 _7280.NotificationRecipient = OnNotification;
 }
 // Disconnects from AI-7280
 public void Close()
 {
 if (_7280 != null) _7280.Close();
 _7280 = null;
 }
 // Continued on next page...

aiDevices Framework Programming Guide 31

Notifications Advent Instruments Inc.

 // Called by _7280 object to deliver notifications
 private void OnNotification(Notification N)
 {
 //--
 // Filter out only line state changes
 //--
 SignalNotification S = N as SignalDetectedNotification;
 if (S == null) return;
 LineStateChange LS = S.Signal as LineStateChange;
 if (LS == null) return;

 switch (LS.State)
 {
 case Telephone_Line_State.Off_Hook:
 // turn on a 440 Hz tone when off hook
 _7280.ToneA.Update(new Tone(SignalLevel.IndBV(0),
 Frequency.InHz(440)));
 _7280.ToneA.Generate();
 break;
 case Telephone_Line_State.On_Hook:
 _7280.ToneA.StopGenerator();
 break;
 }
 }
}

aiDevices Framework Programming Guide 32

Advent Instruments Inc. Exception Handling

11. Exception Handling

While not desirable, exception conditions may occur within the classes in the aiDevices
framework. The following sections document the general exception handling behavior
built into aiDevices which can be leveraged to create robust fault-tolerant applications.
Exceptions can occur within aiDevices for a variety of different reasons and are broken
into categories and discussed in the following sub-sections.

11.1. aiDeviceException
All Exception classes which relate to instrument operation derive from the
aiDeviceException base class and can be reported through each of exception reporting
mechanisms described in section 11.3. This class defines two severities of exceptions
which are reported through the Severity property of aiDeviceException:

• ExceptionSeverity.Critical – indicates that an error condition occurred from
which recovery was not possible. In general this means that communications
with the instrument is suspended and further operations are not possible.
Applications should call the Close method of the device object as soon as
possible.

• ExceptionSeverity.Minor – indicates that an error occurred from which
recovery was possible. This type of exception is used to report conditions which
could only slightly impair performance.

11.2. Automatic Communication Suspension
Whenever a serious error is detected within a device object further communications with
the instrument are suspended; but not terminated. Such error conditions can include
communication errors, instrument file system errors, or unexpected internal exceptions. It
is important to note the general device class behavior when such an error occurs:

1. Further communications with the instrument are suspended (commands will not
be sent) although (if possible) the communication medium is kept open. This
ensures that the communications trace remains valid and can be used for
debugging the exception condition. Applications still must call Close before
setting the device object to null!

2. The exception is reported using each of the passive reporting mechanisms
discussed in the section 11.3.

3. The IsActive property of the device object returns false which can be detected
by parent applications (if polling is desirable)

4. Each property or function which communicates with the instrument will return
default values.

aiDevices Framework Programming Guide 33

Exception Handling Advent Instruments Inc.

11.3. Passive Exception Reporting Mechanisms
Not all exceptions with the aiDevices assembly can or should be thrown in a manner that
can be handled using try-catch statements. Possible conditions where conventional
throw/catch mechanisms are not appropriate include:

• Exceptions which occur in worker threads which are not accessible to the
calling application. Throwing exceptions in this circumstance could be fatal to
the entire project (which is obviously not desirable).

• Exceptions which are noteworthy and should be reported to the user, but so
minor they should not interrupt the flow of execution.

• Exceptions which report that normal functionality may be impaired, but not
completely.

The aiDevices framework supports two independent methods for passive exception
reporting:

• All device classes contain an Exceptions property which maintains a thread-
safe list of all Exceptions which have been reported by the application. The
calling application can access this list at any time to check for passively reported
exceptions.

• The Notification system (see section 10) can deliver ExceptionNotification
objects which inform applications of exception conditions.

Example:
 // aiDevice Dev;

 // Check the list of exceptions in the device dev
 foreach (aiDeviceException ex in Dev.Exceptions)
 {
 switch (ex.Severity)
 {
 case ExceptionSeverity.Critical:
 // Something really bad happened!
 break;
 case ExceptionSeverity.Minor:
 // Worthy of note
 break;
 default:
 break;
 }
 }

aiDevices Framework Programming Guide 34

Advent Instruments Inc. Exception Handling

11.4. Exception Conditions and Behaviors

11.4.1. Invalid Arguments
In some circumstances, an application may pass an invalid argument to an aiDevices
class. When such invalid arguments are detected

• An Exception is raised to alert the calling application of the offending argument
and possibly indicate the range of acceptable arguments.

• The exception is not reported using a passive mechanism since applications can
and should easily recover from such errors.

When invalid arguments are detected the following exceptions may be thrown:

• System.ArgumentNullException

• System.NullReferenceException

• System.IO.InvalidDataException

• Advent.aiDevices.ArgumentToHighException

• Advent.aiDevices.ArgumentToLowException

Wherever possible applications should reference limits reported by the Capabilities
object returned from device objects to avoid argument exceptions (see section 8.3).

11.4.2. Resource Conflicts
Each device object and each device support object is responsible for managing, reserving,
and releasing instrument resources to prevent erratic operation which may result from
multiple objects competing for system resources. Whenever applications or support
objects attempt to concurrently access a resource

1. A ResourceConflictException will be thrown

2. The Exception will not be reported using a passive mechanism since
applications can easily recover from such errors.

When resource conflicts are detected the following exceptions may be thrown

• Advent.aiDevices.ResourceConflictException

11.4.3. Unsupported Features
If an application requests a feature which is not supported by an instrument or the device
class

1. A NotSupportedException will be thrown

2. The exceptions will not be reported using a passive mechanism since
applications can easily recover from such errors.

When an unsupported feature is requested the following exceptions may be thrown

• System. NotSupportedException

aiDevices Framework Programming Guide 35

Exception Handling Advent Instruments Inc.

11.4.4. Communication Errors
Communication errors can occur in many different forms for many reasons. Such reasons
can include:

• A cable is disconnected or instrument power is lost

• A response from an instrument is malformed or not understood

• An instrument did not respond to a command within a prescribed timeout

Regardless of the source, all serious communication errors result in the same behavior.

1. The exception is reported using each of the passive reporting mechanisms (see
section 11.3)

2. Communications with the instrument are suspended. When communications are
suspended the device object’s .IsActive property returns false.

3. All further accesses of methods or properties of supporting objects will return
default values or will be ignored.

11.4.5. Unexpected Errors
Inevitably some exceptions may occur due to bugs or rare conditions which were not
anticipated. Depending on the location of the exception, the exception will either be
handled in an identical manner as Communication Errors, or Invalid Arguments. If any
such error occurs in your application please do not hesitate to contact technical support at
www.adventinstruments.com or any method listed in the Technical Support section and
we will quickly resolve the issue.

aiDevices Framework Programming Guide 36

http://www.adventinstruments.com/

Advent Instruments Inc. Debugging and Tracing

12. Debugging and Tracing

As applications grow in complexity often times it becomes exceedingly difficult to track
down the exact source of errors or performance problems. Without visibility into the
inner workings of each software component the task may verge on impossible. Each
device class within the aiDevices framework exposes a set of methods and objects which
assist application developers in debugging and tracing. More specifically:

• A public trace interface which allow developers to insert their own comments
into the internal communications trace. These comments will then appear
graphically in the debug form and in trace files

• A debugging form which can be created independently for each device object
which can:

o Display general device information and communications statistics

o Display a live graphical representation of the communications trace so
the developer can watch his/her comments inline with the
communications between the instrument and the device class

• A mechanism for writing a debug trace file containing the state of the entire
device object and the communications trace. This file can be sent to Advent
Instrument technical support to resolve complicated problems encountered by
developers.

12.1. Communication Trace
A trace object is maintained within each device object which keeps a short list of recent
communications and other important information as illustrated in Figure 3.This trace will:

• Record all communications to and from the connected instrument

• Record all serious exceptions reported by the device

• Record comments inserted by the device object which report important
information

• Record all notifications generated by the device object regardless of whether the
application is notified.

• Record comments added by the parent application

aiDevices Framework Programming Guide 37

Debugging and Tracing Advent Instruments Inc.

Figure 3Communications Trace Structure

Each device class exposes the trace features through the Trace property which can be
accessed by applications to insert customized comments into the trace. This trace object
exposes the following interface:

• Add – this method allows application developers to add their own custom
comments to the internal communication trace which will appear in the debug
trace files and graphically in the debug window.

• IsFrozen – when set to true, the internal communications trace is frozen such
that no new items can be added. This may become useful when application
developers need visibility for a particular point in time but do not want to stop
the current execution of the project.

Example:

 // This will add the comment directly to the trace
 _7280.Trace.Add("Starting ringing");

 //Generate a ringing burst and wait until it's done
 _7280.Ring.Generate(RingBurst);
 _7280.Wait.Until(ActionType.Ringing_Pattern_Stopped,
 TimeInterval.InSeconds(5));

 _7280.Trace.Add("Ringing Complete");

The contents of the trace can be made visible in several ways:

1. The application can write a debug trace file which contains the contents of the
trace along with internal state information (see section 12.3).

2. The application can create a debug form for the device object which contains a
tab which displays the live contents of the trace as the application executes (see
section 12.2).

aiDevices Framework Programming Guide 38

Advent Instruments Inc. Debugging and Tracing

12.2. Debug Forms
When developing test and simulation applications with custom components it is often
essential to obtain deep visibility into the internal workings of the software without
complicated and unnecessary inline debugging code. To this end each device object
exposes the CreateDebugForm function which will create and return a new form
containing controls which display instrument specific debugging information. Please
note:

• The form is not shown by default. Applications will need to call the .Show
method to make it visible.

• These forms can be created on a thread other than the one on which the device
object was created. This ensures that the window does not “freeze” when your
application is busy.

Once created these forms will:

• Automatically update and display the state of the device object including all
communications trace information and applicable instrument states.

• Persist after the device object has terminated communications in order to display
the final state of the device object.

Example:

 // Construct a debug form for this device but do not show it
 Form DebugForm = _7280.CreateDebugForm();

 // display this form to the user
 DebugForm.Show();

12.2.1. Communications Trace Display
Each debug form contains a tab which displays the live contents of the communications
trace in a manner which is simple to navigate:

• Items within the trace are color coded to identify their respective meanings

• Where possible communications are displayed with their high-level meaning or
property name to make the contents easy to read.

• The display can be filtered to exclude items which may not be of interest (like
status update communications which are very frequent)

An example of the communications trace display is shown in Figure 4.

aiDevices Framework Programming Guide 39

Debugging and Tracing Advent Instruments Inc.

Figure 4 Debug Form Communication Trace

The contents of the trace are displayed graphically within the trace from top to bottom in
order from most recent to least recent. As items are added to the trace the contents will
automatically update. The format of the trace window is color coded to separate elements
in the trace by type:

• Comments are generally not highlighted and appear with a white background

• All communications sent to the instrument are highlighted in light blue

• All communications received from the instrument are highlighted in light green

• Exceptions are highlighted in red to make them stand out.

• Notifications are highlighted in yellow

Since even normal communications between a device object and an instrument can
involve a significant amount of data transfer, the trace display offers a set of simple filters
to ensure the display is easy to read while debugging. These filter settings are annotated
in Figure 5.

Figure 5Communication Trace Filters

aiDevices Framework Programming Guide 40

Advent Instruments Inc. Debugging and Tracing

12.3. Debug Trace Files
While not desirable or intended sometimes problems may arise within the framework
which are very difficult to debug without detailed information. For this reason each
device class can create a detailed text file containing the current state of the device object
and the communications trace. Each device object exposes the following methods:

• DebugTraceFileName – this specifies the default filename for debug trace files
written by the object. This can be assigned immediately once communications
are established to ensure that any future calls to WriteDebugTraceFile will write
to this location.

• WriteDebugTraceFile – this method immediately writes a debug trace file
based on the current device object state. If a specific filename is not supplied,
then the default filename will be used which is specified by the
DebugTraceFileName property.

When contacting technical support for assistance with a particular problem with a
device object contained within the aiDevices framework please email a copy of this
debug trace file to technical support to the email address listed in section 21.

aiDevices Framework Programming Guide 41

Descriptor Classes Advent Instruments Inc.

13. Descriptor Classes

The aiDevices framework contains an assortment of descriptor classes which help
manage details related to signal generation, measurements, signal representations, etc.

13.1. Quantities, Units, and Measures

Representations of different physical quantities, measures, and unit systems are required
to perform may common tasks such as

• Synthesizing signals

• Assigning telephone interface parameters

• Returning measurements

All physical quantities, units, and measures within the aiDevices framework are managed
using descriptor classes with representative names. Each of these classes

• Manage different representations and unit systems for physical measures

• Support creation of quantities in different scales (i.e. Amps, milliamps, etc)

• Support conversions between each unit system or representation

• Overload the ToString function to return a “display friendly” string which
represents the described quantity. For example “2.13 mA” instead of 0.00213

• Support common operations (addition, subtraction, multiplication, etc) which
allow applications to perform abstract calculations without regard to unit
systems or internal representation. For example: a developer could write a level
sweep algorithm without needing to know if the levels are specified in Vrms,
dBV, or dBm.

These descriptor classes

• Result in more readable code since class names and methods are much more
descriptive than double, int, and float.

• Result in more portable, abstract, and stable code since incompatible operands
or operations can be detected by the compiler

aiDevices Framework Programming Guide 42

Advent Instruments Inc. Descriptor Classes

Each class which represents a quantity or measure follows a common design pattern
outlined below:

• Most descriptors are created using static functions which are named to specify
the representation of the quantity being created. In general your code will look
somewhat like the following:

 ClassName.InUnitsAndScale(Value)

where UnitsAndScale will describe of the units and scale of the definition.
There also may be more than one creation function if the physical quantity has
multiple representations or scales. For example, each of the following defines a
frequency of 1000 Hz

 Frequency.InHz(1000)
 Frequency.InkHz(1)

• Each descriptor object is immutable (meaning the internal values cannot be
changed once created). To create a new physical quantity representation you
must create a new object through a creation function, operator, or conversion
function.

• If multiple representations of a quantity are possible the object will expose one
or more conversion functions in the form

 ObjectVariable.ToAlternateRepresentation

where AlternateRepresentation describes the representation of the object which
is returned. For example Level.TodBV expresses that the representation within
the variable Level will be returned in a dBV unit system.

• Each object can be compared natively using the standard comparison operators
(>, >=, <, <=, ==, !=) for objects of the same class. Attempting to compare
objects of incompatible class (for example Frequency and Voltage) will result in
an exception.

• Where logical, arithmetic operators are defined for quantities which make
calculations easier. For example: you can add and subtract Frequency objects to
calculate new values.

• Each class may define a set of static or instance methods which assist in
common conversions or calculations. For example SignalLevel helps with twist
calculations.

• Each object returns the numeric value of a quantity in its current representation
by means of the read-only Value property.

• If multiple scales are possible, the numeric value of a quantity will be returned
through read-only properties in the form

 ObjectVariable.ValueInRepresenation

For example Current.ValueInMilliamps is an example where the numerical
value of a current measurement is being returned in milliamps.

• The ToString function of each object will return a well formatted string
describing the contained quantity. (i.e. “1.25 mA”, or “-6.45 dBV”)

aiDevices Framework Programming Guide 43

Descriptor Classes Advent Instruments Inc.

13.1.1. Signal Levels
Measurement and specification of AC voltages are managed by the SignalLevel class.
This class can represent signals in Volts RMS, dBV, and dBm and convert between each
representation. This class also exposes several static functions to assist with common
level calculations.

To create a signal level you must call one of the following static functions:

• InVrms – creates a level specified in Volts RMS (Vrms)

• IndBV – creates a level specified in decibels relative to 1 Volt RMS (dBV)

• IndBm – creates a level specified in decibels relative to the equivalent voltage
generated by dissipating 1 milliWatt across a 600 Ω load. (dBm)

• InRepresentation – creates one of the above level specifications based on an
enumerated argument.

Once a SignalLevel object is created it can be converted to any particular representation
through one of the member functions.

• ToVrms – returns the signal level converted to Volts RMS

• TodBm – returns the signal level converted to dBm

• TodB – returns the signal level converted to dBV

• ToRepresentation – returns the signal level converted to the representation
specified by an enumerated argument. This is very handy when it is desirable to
programmatically change representations when displaying signal level results.

The numerical value corresponding to the signal level in the current representation is
accessible through the following read-only properties

• Value – returns the numeric signal value expressed in the current representation.

• Specification – returns an enumerated value which indicates the specification
system used to represent the signal level.

The SignalLevel class also implements a range of arithmetic operators which make
manipulations and sweeps very easy to implement and understand.

All signal generator levels are specified as open circuit levels and are accurate if the
generator is not connected to any AC load (termination). To obtain the desired signal
level when the generator is terminated you will need to adjust the generator level to
compensate for the source and termination impedance as discussed below.

To avoid unnecessary exceptions any zero absolute signal levels will be converted to
extremely small non-zero values when converting to logarithmic representations such as
dBV or dBm. For example 0 Vrms may convert to -1000 dBV.

aiDevices Framework Programming Guide 44

Advent Instruments Inc. Descriptor Classes

Examples:

SignalLevel Level = SignalLevel.InVrms(0.5); // 0.5 Volts RMS
Level = Level.TodB(); // Converts to -6.02 dBV
Level = Level.TodBm(); // Converts to -3.80 dBm
Level = Level.ToVrms(); // Converts back to 0.5 Vrms

// Prints "500 mVrms" to the immediate window

Debug.Print(Level.ToString());

SignalLevel Min = SignalLevel.IndBV(-40);
SignalLevel Inc = SignalLevel.InVrms(0.1);
SignalLevel Max = SignalLevel.IndBV(12);

for (SignalLevel Level = Min; Level <= Max; Level += Inc)
{ // sweep from Min to Max incrementing by Inc
}
for (SignalLevel Level = Min; Level <= Max; Level *= 2)
{ // sweep from Min to Max doubling each loop

}

When specifying signals levels to be generated on a transmission line (such as the
telephone line) applications must be careful to compensate for source and load
impedances which can affect the resulting signal level on the line. The two common
cases are:

• Un-Terminated – when the signal generator is not loaded (or no equipment
attached) the signal generator level will match the line level with no
compensation required.

• Terminated – when the signal generator is loaded (terminated) the line level
will be reduced by a factor which depends on the source and load impedances.

The situation illustrated in Figure 6 is representative of a telephone network when a
phone goes off hook. In this scenario:

• From the perspective of the Central Office (CO), the telephone has terminated
the far end of the telephone line and loads the signal generator within the CO.
The signals measured on the telephone line which are generated by the CO will
be proportionally less than the levels generated internally within the CO (or if
the line had not been terminated)

• From the perspective of the telephone, the CO has terminated the far end of the
telephone line and loads the signal generator within the phone. The signals
measured on the telephone line which are generated by the phone will be
proportionally less than the levels generated internally within the phone.

Unless explicitly specified otherwise all measured signal levels are measured directly
from the transmission line labeled as “line level” (see Figure 6)

aiDevices Framework Programming Guide 45

Descriptor Classes Advent Instruments Inc.

Figure 6 Signal Levels and Terminations

The resulting signal level (at a particular frequency f) can be calculated using the
formula:

)(
)()(

)()(fV
fZfZ

fZfV generator
sL

L
line +

=

When the impedances involved are resistive this formula is very easy to evaluate (as it is
the basic ohms law resistor divider equation). However many circuits involve reactive
components (capacitors or inductors) which can make the magnitude and phase
characteristics of the impedances vary with frequency. Each impedance value must then
be represented using complex numbers which makes the above formula more difficult to
evaluate. The SignalLevel class provides two static functions which calculate these
generator levels and terminated signal levels for any source and load impedance. The two
methods are:

• CalculateGeneratorLevel – calculates the signal generator level required to
produce a desired (sinusoidal) signal level on the line at a particular frequency.

• CalculateTerminatedLevel – calculates the signal level which is present on the
line given the level and frequency of the signal generator, the generator output
impedance, and the termination impedance.

Each of these functions will accept Nothing/null for the termination impedance argument
to specify “no termination”.

Examples:

// This calculates the generator level required to
// produce a line level of -10 dBV @ 440 Hz
// when the generator has an output impedance
// compliant with TBR-21 (complex) and is
// teriminated with 600 ohms
Gen = SignalLevel.CalculateGeneratorLevel(
 SignalLevel.IndBV(-10), // desired line level
 Frequency.InHz(440), // signal frequency
 Impedance.TBR_21, // output impedance
 Impedance.Resistive_600); // termination impedance

// continued on next page...

aiDevices Framework Programming Guide 46

Advent Instruments Inc. Descriptor Classes

// This calcualtes the line voltage which result
// if a generator produces -8 dBm @ 2 kHz with
// a 604 ohm output impedance and is terminated
// with a German ZR complex impedance
Line = SignalLevel.CalculateTerminatedLineLevel(
 SignalLevel.IndBm(-8), // generator level
 Frequency.InkHz(2), // generator frequency
 Resistance.InOhms(604),// output impedance
 Impedance.German_ZR); // termination impedance

// This demonstrates how an instrument's generator impedance
// setting can be used to calculate generator levels
Frequency Freq = Frequency.InHz(400);
Gen = SignalLevel.CalculateGeneratorLevel(
 SignalLevel.IndBV(-10),
 Freq,
 _7280.TelInt.ACImpedance,// output impedance
 Impedance.Resistive_600);

// Now we generate the specified level
_7280.ToneA.Generate(new Tone(Gen, Freq));

13.1.2. Frequency
Measurements and specifications of Frequency are managed by the Frequency class
which represents frequency in Hertz (Hz). To assist in readability frequencies can be
specified using two static functions:

• InHz – which creates a frequency descriptor specified in Hertz

• InkHz – which creates a frequency descriptor specified in kilohertz

The numeric value of a frequency can be accessed through the following read-only
properties:

• Value – Returns the frequency in Hertz

• ValueInkHz – Returns the numeric frequency in kilohertz.

The Frequency class also defines a standard set of operators that make manipulations and
sweeps very easy to implement and understand.

Examples:

Frequency Min = Frequency.InHz(100);
Frequency Max = Frequency.InkHz(20);
for (Frequency F = Min; F <= Max; F += Frequency.InHz(100))
{
 // Sweep from 100 Hz to 20 kHz in 100 Hz steps

}

aiDevices Framework Programming Guide 47

Descriptor Classes Advent Instruments Inc.

13.1.3. DC Current
Measurements and specifications of DC currents are managed by the DCCurrent class.
DC current descriptors can be created using the following static functions:

• InAmps – which creates a current descriptor specified in Amps (A)

• InMilliamps – which creates a current descriptor specified in milliamps (mA)

The value of a DC current can be accessed through the following read-only properties:

• Value – returns the current measured in amps (A)

• ValueInMilliamps – returns the current value expressed in milliamps (mA).

13.1.4. DC Voltage
Measurements and specifications of DC voltages are managed by the DCVoltage class.
Voltage descriptors can be specified using the static function:

• InVolts – creates a voltage descriptor specified in Volts

The value of a DC voltage can be accessed through the following read-only property:

• Value – returns the voltage expressed in Volts

13.1.5. Resistance
Measurements and specifications of resistance are managed by the Resistance class
which represents resistance in Ohms. Resistance descriptors can be created using the
following static functions:

• InOhms – creates a resistance descriptor specified in ohms (Ω)

• InKilohms – creates a resistance descriptor specified in killohms (kΩ)

• InMegohms – creates a resistance descriptor specified in megohms (MΩ)

The numeric value of a resistance can be accessed through the following read-only
properties:

• Value – returns the resistance expressed in ohms (Ω)

• ValueInKilohms – returns the resistance value expressed in kilohms (kΩ)

• ValueInMegohms – returns the resistance value expressed in megohms (MΩ)

13.1.6. Time Intervals and Durations
Relative measures of time are described by the TimeInterval class. Time interval
descriptors can be created using the following static functions:

• InSeconds – creates a time interval descriptor specified in seconds (s)

• InMilliseconds – creates a time interval descriptor specified in milliseconds
(ms)

The numeric value of a time interval can be accessed through the following read-only
properties:

• Value – returns the time interval expressed in seconds

• ValueInMilliseconds – returns the time interval expressed in milliseconds

aiDevices Framework Programming Guide 48

Advent Instruments Inc. Descriptor Classes

13.1.7. Decibels, Gain, and Unit-less Values
Some measurements and specifications such as gains, twists, and ratios are specified as
unit-less quantities. These values are managed by the UnitlessQuantity class and can be
created through one of the following static functions.

• InAbsolute – creates a unit-less value expressed as a number

• IndB – creates a relative unit-less value expressed in decibels (relative to 1)

Each unit-less quantity can be converted back and forth between representations using the
functions:

• ToAbsolute – returns the unit-less value expressed as an absolute number

• TodB – returns the unit-less value expressed in dB (relative to 1)

The numerical value of the unit-less value can be returned by the read-only property

• Value – returns the unit-less value expressed in the current representation

Examples:

UnitlessQuantity Gain = UnitlessQuantity.IndB(-20); // -20 dB

Double Mult = Gain.ToAbsolute().Value; // returns 0.1

// Adjust signal level using gain in decibels
Level = SignalLevel.InVrms(0.045) * UnitlessQuantity.IndB(20);

aiDevices Framework Programming Guide 49

Descriptor Classes Advent Instruments Inc.

13.2. Impedances
Electrical impedance is a measure of opposition to alternating or direct current within a
circuit; which depends on the type and configuration of components within any given
circuit. Impedance characteristics are described within the aiDevices framework using the
following classes and interfaces:

• IImpedance – this interface is implemented by any class which models a
component or measure from which impedance characteristics can be calculated.
This interface defines the GetImpedance function which will return the
impedance (as a complex number) of the described network at a particular
frequency.

• Impedance – this is a façade class that declares many static members and helper
functions. This class is also used as a base class for the following classes.

• ResistiveImpedance – describes a purely resistive impedance characteristic
which can be modeled with a simple resistor.

• ComplexImpedance – describes a complex impedance response which is
defined by a series/parallel RC circuit (Rs +Rp||Cp) which is very commonly
found in telephony impedance specifications.

The Impedance base class exposes several static variable declarations for common
telephone line impedance values which are commonly installed in instruments.

• Impedance.Resistive_600 – describes 600 Ω resistive impedance.

• Impedance.Resistive_900 – describes a 900 Ω resistive impedance.

• Impedance.TBR_21 – describes the complex ETSI TBR-21 network (270 Ω +
[750Ω || 150 nF])

• Impedance.German_ZR – which represents the complex German-ZR
impedance network (220 Ω + [820Ω || 115 nF])

Terminated signal level calculations can be performed automatically based on these
impedance descriptors through the SignalLevel static functions described in section
13.1.1.

Example:

 ' Sets the telephone line AC impedance to 600 Ω
 _7280.TelInt.ACImpedance = Impedance.Resistive_600

 ' Sets the telephone interface AC impedance to German-ZR
 _5620.TelInt.ACImpedance = Impedance.German_ZR

 ' Sets the telephone line AC impedance to 500 Ω
 _5620.TelInt.ACImpedance = ResistiveImpedance.InOhms(500)

aiDevices Framework Programming Guide 50

Advent Instruments Inc. Descriptor Classes

13.3. Filters and Signal Filtering
Most instruments supported by the aiDevices framework contain several filter banks
which can be configured to make band-limited measurements, perform THD+N
measurements, or generate band limits or shaped signals. Each filter bank typically
supports a variety of filters, some of which have programmable corner frequencies (low
pass, high pass etc) and some which have fixed response characteristics (DMTF,
CMessage, etc).

Filters definitions are managed by means of descriptor classes that uniquely describe a
particular filter configuration. Each filter descriptor class implements the IFilter interface
and can be

• Created by a custom application and then passed to a device object which will
configure the corresponding filter bank with the specified filter definition.

• Returned by a device object to an application which can then determine the filter
configuration by casting the type of object returned.

While the potential number of filter definitions is limitless, most Advent Instruments
products implement a very specific set of common filters. The Filter class exposes a
façade of static functions which makes constructing these standard filters descriptors
simple and easy to read.

• ButterworthLowPass – returns a 4th order Butterworth low pass filter
descriptor with a programmable corner frequency

• ButterworthHighPass – returns a 4th order Butterworth high pass filter
descriptor with a programmable corner frequency

• ButterworthHighAndLowPass – returns a descriptor with a combination of 4th
order Butterworth low and high pass filters each with programmable corner
filters.

• Notch – returns a single Butterworth notch filter descriptor with a
programmable center frequency definition.

• DualNotch – returns a descriptor containing a combination of two Butterworth
notch filters each with programmable center frequency

• BandPass – returns a standard 4th order Butterworth band pass filter descriptor
with a programmable center frequency.

• DTMFRow – returns a descriptor that specified the filter which extracts only
the low group (row) tones in a DTMF signal

• DTMFColumn – returns a descriptor that specified the filter which extracts
only the high group (column) tones in a DTMF signal

• AWeighting – returns a standard A-weighting filter descriptor

• CMessage – returns a standard C-Message weighting filter descriptor

• O41Psosphometric – returns an ITU O.41 filter descriptor

aiDevices Framework Programming Guide 51

Descriptor Classes Advent Instruments Inc.

Examples:

' Configures a butterworth lowpass (fc=1Khz) before the meter measurements
_7280.Meter.MeasurementFilter = Filter.ButterworthLowPass(Frequency.InkHz(1))

' Configures notch filters to remove 350 Hz and 440 Hz
_7280.Meter.NotchFilterBank = Filter.DualNotch(Frequency.InHz(350), _
 Frequency.InHz(440))

' Apply the O.41 filter before measurements
_5620.Meter.MeasurementFilter = Filter.O41Psophometric

Not all instruments support all filter types or configurations! Be sure to check the
instrument capabilities before assigning filter definitions. If an unsupported filter type is
detected the associated device objects will generally throw a NotSupportedException

Filter descriptions can be very heterogeneous in nature and may not share any common
base elements due to differences in implementation or specification. All filter
descriptors implement the IFilter interface and may not necessarily inherit from
the Filter class.

Each possible filter descriptor is sub-classed into categories based on response and
function as illustrated by the class diagram shown in Figure 7.

Figure 7 Filter class diagram

Applications which require more detailed information on the filter configuration can
leverage the descriptor’s inheritance structure and cast to determine the filter type as
illustrated in the following example.

aiDevices Framework Programming Guide 52

Advent Instruments Inc. Descriptor Classes

Examples:

Private Sub DetermineFilterType(ByVal Filter As IFilter)
 ' Check if it's a low pass filter
 Dim LPF = TryCast(Filter, LowPassFilter)
 If LPF IsNot Nothing Then
 Debug.Print("Low pass with corner=" & _
 LPF.CornerFrequency)
 End If
 ' check if it's a notch filter
 Dim Notch = TryCast(Filter, NotchFilter)
 If Notch IsNot Nothing Then
 Debug.Print("Notch filter with center=" &
 Notch.CenterFrequency)
 End If
End Sub

13.4. Telephone Line State
Much of the signaling in analog telephony is achieved through changes in telephone line
state. The general “state” of the telephone line can be determined by examining the line
voltage and loop current passing through a telephone interface In general a telephone line
can be viewed as being in one of four general states depending on the perspective of the
viewer:

Figure 8 Telephone Line States

Within the aiDevices framework these four states are represented using the
Telephone_Line_State enumeration which has a value corresponding to each state shown
in Figure 8. This type may be used by device classes, notifications, and signal definitions
to describe these general line states.

aiDevices Framework Programming Guide 53

Descriptor Classes Advent Instruments Inc.

13.5. Telephone Line Polarity
Another signaling method used within analog telephony is the “line reversal” which can
be characterized as a polarity reversal of the line voltage as measured between the two
conductors (tip and ring). The polarity of a telephone line is specified within aiDevices
using an enumeration named Telephone_Line_Polarity which has two members:

• Normal – which indicates the voltage is in the “normal” polarity as defined by
the relevant instrument

• Reversed – which indicates the voltage is reversed in relation to the
instrument’s normal polarity definition.

Each instrument supported by aiDevices defines a particular polarity as “Normal”.
Typically this polarity will result in negative line voltage measurements from the
telephone interface since the “normal” DC voltage feed is traditionally specified as -48
Volts. Please note:

• Changes in line polarity are always specified relative to the instrument specific
“normal” polarity

• Many telephone cables are wired without regard to polarity of the tip and ring
conductors and may result unexpected telephone line polarities.

aiDevices Framework Programming Guide 54

Advent Instruments Inc. Signal Descriptor Classes

14. Signal Descriptor Classes

Within the aiDevices framework all phenomena which can be programmatically
generated or detected by an instrument are collectively labeled as “signals”. In fact a
large number of the classes within the assembly are devoted to specifying these signals so
the resulting descriptors can be used as a means of communication between applications
and the device objects.

The above signal definition is quite broad and can encompass a large variety of
definitions which differ widely with regard to their characteristics, meaning, and even
transmission medium (for example DTMF vs. OSI). The aiDevices framework uses a
variety of different language features and design techniques to make dealing with these
signals simple, abstract, and extensible. The following sections detail the design and
usage of each signal supported within the aiDevices framework.

14.1. Interfaces and Signal Categorization
From a cursory examination of the “signal” definition above it is clear that

• Many different types of phenomena can be labeled as “signals” but may vary
greatly in meaning, representation, and medium and will thus have very little in
common with each other.

• When considering a particular type of signal many of the specifications required
to generate the signal are also required to adequately report the detection of the
same signal. For example levels and frequencies are required to specify the
generation and detection of a DTMF signal.

• Some signals are considered “valid” with or without reference to timing. For
example DTMF is “valid” so long as the correct frequencies and levels, whereas
CAS/DTAS is only valid if the frequencies and levels are applied for a very
particular duration.

Since different types of signals do not inherently share many characteristics, all classes
that represent signals do not inherit from a base class but instead implement the ISignal
interface. This interface:

• Labels the descriptor classes that represent signals

• Defines the SignalType property which identifies the type of signal.

• Allows applications to collect and pass signal descriptors abstractly using
ISignal without reference to their concrete types.

It is exceedingly difficult to design a general interface or base class to group all signals
by particular characteristics (like frequency, voltage, etc) however aiDevices uses two
other interfaces to group signals by duration and semantics illustrated below in Figure 9.

aiDevices Framework Programming Guide 55

Signal Descriptor Classes Advent Instruments Inc.

Figure 9 Signal Interface Inheritance Diagram

All descriptor classes that represent a signal which occurs for a well defined and finite
duration implement the IFiniteSignal interface.

This IFiniteSignal interface contains only one member which reports the duration of the
signal. While this may seem trivial when examining a singular signal type, this
information becomes essential when sequencing and sorting signal types.

All descriptor classes that represent a signal which has been detected by an instrument
implement the IDetectedSignal interface.

It is worthy of note that the ISignal interface does not contain a specification for a
detection or transmission time. This is because the transmission time of signals are
specified separately when generated so the same signal object can be used for multiple
transmissions without manipulation. The IDetectedSignal interface exposes only a single
member which reports the detection time of the signal.

14.2. Signal Descriptors and Inheritance Patterns
As noted in the previous section, it is very difficult to design a useful base class for all
possible types of signals based on general characteristics. However, when considering a
particular type of signal it essential to use base classes to ensure optimal code reuse,
abstraction, and object compatibility.

In general, each particular type of signal can be specified using a set of classes which are
all related through inheritance. The base class is usually named in a manner which
indicates the type of signal it represents and is the most general and timing invariant.
Each successive subclass then becomes successively more specific and named to convey
the functional differences from its base class. As an example of this general inheritance
pattern, consider the Ringing signal illustrated below.

aiDevices Framework Programming Guide 56

Advent Instruments Inc. Signal Descriptor Classes

Figure 10 Example of Signal Inheritance Pattern

The following discussion will use the example shown above in Figure 10 to relate the
inheritance design pattern commonly used with many different signals.

• The Ringing base class represents a ringing signal which can be applied on a
telephone line to alert a customer to an incoming phone call. It contains
properties for the signal level, frequency, wave shape, and DC offset to specify
the basic characteristics of the voltage signal.

o The Ringing base class implements the ISignal interface which labels it
as representing a type of signal

o Since a ringing signal is considered valid regardless of duration (which
could even be infinite) this base class does not contain duration or
timing information. In fact this class is so abstract it could conceivably
be used to abstractly configure a generator or even report signal
measurements.

• The RingingBurst class represents a ringing signal with a finite duration and
hence implements the IFiniteSignal interface. Since this class inherits from the
Ringing class it also contains all the same properties for defining a ringing
signal. This class is slightly more concrete (in that it now only applies to finite
duration ringing signals) however this class still does not contain any
information regarding the particular instant in time to which this ringing burst
occurs. By omitting this timing the same class may be used to specify multiple
instances of the same signal.

• The DetectedRingingBurst class represents a singular instance of a ringing
signal which has been detected by an instrument and thus implements the
IDetectedSignal interface.

o This class reports the particular instant in time when the start of this
signal was detected.

o This class may report extra measurement information over and above
the Ringing and RingingBurst signal which pertains to this particular
instance of the signal but not to ringing signals in general. (such as
noise or distortion measurements)

aiDevices Framework Programming Guide 57

Signal Descriptor Classes Advent Instruments Inc.

14.3. Wave Shape
While not technically a signal, the Waveshape class describes the “shape” of periodic
signals within the aiDevices framework. Each Waveshape object exposes the following
members:

• Name – this property returns a descriptive name for this wave shape

• CrestFactor – this returns the ideal theoretical crest factor for the ideal wave
shape. The crest factor is defined as the ratio of the peak signal value and the
signal’s Root-Mean Square (RMS) value. Deviations from this ideal theoretical
crest factor indicate a distortion of some form (which cannot be determined from
this measure alone)

Waveshape objects cannot be created directly by applications but rather the Waveshape
class statically declares three natively supported shapes which illustrated in Figure 11.

Static Member Theoretical Crest Factor Illustration

Waveshape.Sinusoial 414.12 ≈

Waveshape.Triangular 732.13 ≈

Waveshape.Square 1

Figure 11 Native Wave Shapes

These Waveshape objects can then be used to define other higher level signals or
configure signal generators.

Example:

 // Make ringing sinusoidal
 _7280.Ring.Shape = Waveshape.Sinusoiodal;

 // change the tone to triangular shape
 _7280.ToneA.Shape = Waveshape.Triangular;

aiDevices Framework Programming Guide 58

Advent Instruments Inc. Signal Descriptor Classes

14.3.1. CustomWaveShape
In certain cases applications may wish to define their own wave shape for use with signal
generators. The CustomWaveShape class (derived from Waveshape) addresses this need
by enabling users to create arbitrary shapes based on an array of floating point samples.
This object will calculate the crest factor for these custom signals and ensure the sample
format is appropriately scaled for use with signal generators. While the following
example used a very small array it demonstrates how to use the Create method to
construct such a custom wave shape.

Example:

 // Create a custom wave shape definition
 CustomWaveShape MyShape = CustomWaveShape.Create("Test Shape 1",
 new double[]{1,2,-2,-1});
//Note: A “real” signal should have more sample points!

Not all device objects or instruments may support custom wave shapes
• Some simply may not support custom wave shapes
• Some may have a limitation on the number of points defined in the wave shape

Please check the device specific documentation for support information for your
particular instrument.

14.4. Cadence
The general terms “cadence” and “signal pattern” are used interchangeably with the
aiDevices framework to describe the timing structure of signals which may be generated
by an instrument. These patterns are represented by the following descriptor classes:

• Cadence – describes an arbitrary on/off timing pattern which does not repeat.

• RepeatingCadence – describes a cadence which may be repeated a finite or
infinite number of times.

Each Cadence is described by a sequence of durations that correspond to the lengths of
time when the signal is active or inactive. The sequence alternates between:

• On Time – specifies the length of time when the signal is applied

• Off Time – specifies the length of time when the signal is not applied (between
signals)

Each pair of “on” and “off” times forms an “interval” as illustrated in Figure 12.

aiDevices Framework Programming Guide 59

Signal Descriptor Classes Advent Instruments Inc.

Figure 12 Simple Cadence Examples

As mentioned above, the Cadence class represents an arbitrary signaling pattern which is
specified using a sequence of on and off times. The Cadence class exposes the following
members:

• IntervalCount – returns the number of (on/off) intervals defined within the
pattern

• OnTime – returns the “On Time” for an interval specified by index

• OffTime – returns the “Off Time” for an interval specified by index

• Name – returns a description of the pattern

Some signals are sequential in nature and specify patterns with zero off time between
each signaling element. To specify such patterns the Cadence class defines the following
static functions:

• AdjacentTiming – specifies a cadence using on-times and sets each off-time to
zero.

The RepeatingCadence class is derived from Cadence and represents multiple repetitions
of a pattern. This class defines the following members:

• RepeatCount – returns the number of times the pattern should be repeated

• RepeatForever – returns true if the pattern should be repeated indefinitely

• IsActiveAfter – returns true if the signal should be left “on” one the pattern
completes.

All classes that represent a signal pattern or cadence implement the ISignalPattern
interface.

aiDevices Framework Programming Guide 60

Advent Instruments Inc. Signal Descriptor Classes

Examples:

' 1 second on
P = New Cadence(TimeInterval.InSeconds(1))

' 2 seconds on, 4 seconds off
P = New Cadence(TimeInterval.InSeconds(2), _
 TimeInterval.InSeconds(4))

' 2 x 50 ms bursts separated by 100 ms
P = New Cadence("Custom Pattern", _
 TimeInterval.InMilliseconds(50), _
 TimeInterval.InMilliseconds(100), _
 TimeInterval.InMilliseconds(50))

' 10 x (100ms on, 100 ms off) then signal is left on
P = New RepeatingCadence("Stutter Dial", 10, True, _
 TimeInterval.InMilliseconds(100), _
 TimeInterval.InMilliseconds(100))

' 2 seconds on, 4 seconds off repeated indefinitely
P = New RepeatingCadence("Ring forever", _
 TimeInterval.InSeconds(2), _
 TimeInterval.InSeconds(4))

' 50ms on, 100ms on, 150 ms on
P = Cadence.AdjacentTiming(TimeInterval.InMilliseconds(50), _
 TimeInterval.InMilliseconds(100), _
 TimeInterval.InMilliseconds(150))

14.5. Tones
Within the aiDevices framework a “Tone” is defined as:

• An AC signal of infinite or finite duration which is

o Periodic with a consistent fundamental frequency and shape

o Consistent in signal level from start to completion

The Tone class represents such a signal and can represent sinusoidal, square, triangular,
and custom shaped signals of constant level and frequency. Often these tone structures
are used as fundamental elements in more complex signal definitions (DTMF, CAS, etc)
but may also be used directly to update and manage support objects like tone generators
documented in section 16.1.1.

The tone class exposes the following members:

• Level – returns the signal level of the tone (see section 13.1.1)

• Frequency – returns the frequency of the AC signal (see section 13.1.2)

• Shape – returns a descriptor of the “shape” of the waveform (see section 14.3)

aiDevices Framework Programming Guide 61

Signal Descriptor Classes Advent Instruments Inc.

Example:

 ' 0 dBV sine wave at 440 Hz
 Dim Tone1 = New Tone(SignalLevel.IndBV(0), _
 Frequency.InHz(440))

 ' +3 dBm sine wave at 480 Hz
 Dim Tone2 = New Tone(SignalLevel.IndBm(3), _
 Frequency.InHz(480), _
 Waveshape.Sinusoiodal)

 ' 0.1 Vrms square wave at 1 kHz
 Dim Tone3 = New Tone(SignalLevel.InVrms(0.1), _
 Frequency.InkHz(1), _
 Waveshape.Square)

14.5.1. Amplitude Modulated Tone
In addition to “pure” tones, the aiDevices framework supports the specification of
amplitude modulated tones using the AMTone class. This class inherits from the Tone
class (which defines the carrier signal) and exposes the following additional members:

• ModulationFrequency – returns the frequency of the modulating signal.

• ModulationDepth – returns the depth of the modulating signal in percent from
0 to 100.

• ModulationShape – returns a descriptor of the “shape” of the modulating signal
(see section 14.3).

Example:

' 10 kHz sine wave with 200 Hz square wave modulation
 Dim AM1 = New AMTone(CarrierLevel:=SignalLevel.IndBV(0), _
 CarrierFrequency:=Frequency.InkHz(5), _
 CarrierShape:=Waveshape.Sinusoiodal, _
 ModulationDepth:=50, _
 ModulationFrequency:=Frequency.InHz(200), _
 ModulationShape:=Waveshape.Square)

 ' 400 hz sine wave with 75% 20 Hz sinusoidal modulation
 Dim AM2 As New AMTone(CarrierLevel:=SignalLevel.InVrms(1), _
 CarrierFrequency:=Frequency.InHz(400), _
 ModulationDepth:=75, _
 ModulationFrequency:=Frequency.InHz(20))

aiDevices Framework Programming Guide 62

Advent Instruments Inc. Signal Descriptor Classes

14.6. Multi-Tone Signals
One classification of signal which occurs frequently in telephony, and is supported by
most Advent Instruments products, is referred to as a ‘Multi-Tone Signal’ which is
defined as:

• An alternating signal of arbitrary or finite duration consisting of

o The summation of one or more periodic signals (tones) each having
constant signal level, fundamental frequency, and wave shape; where

o Each tone is simultaneously applied.

Within the realm of telephony signals this definition can apply to

• DTMF Signals (see section 14.9)

• CAS/DTAS Signals (see section 14.10)

• Metering Pulses (see section 14.11)

• MF Signaling

• Call Progress Tones, Special Information Tones, etc.

The MultiToneSignal class exposing the following members:

• Name – this returns a descriptive name for this signal.

• Tones – this property exposes a collection of the Tone objects used to specify
the signal. These tones are sorted in order of ascending frequency.

The MultiToneSignal class is used as a base class for other specific signal classes but can
also be used to directly create custom signal definitions. MultiToneSignal object can be
constructed in several different manners by specifying

• An array of Tone objects

• A total level and a parameter array of one or more Frequency objects specifying
the frequencies of each tone in the object (the wave shape is assumed to be
sinusoidal)

Example:

' Create a signal with a total level of -3 dBV containing 4 tones
Dim ReceiverOffHook = New MultiToneSignal.(SignalLevel.IndBV(-3), _
 Frequency.InHz(1400), _
 Frequency.InHz(2060), _
 Frequency.InHz(2450), _
 Frequency.InHz(2600))

' define three separate tones
Dim Tone1 = New Tone(SignalLevel.IndBV(0), Frequency.InkHz(1.2))
Dim Tone2 = New Tone(SignalLevel.IndBV(-3), Frequency.InkHz(2.2))
Dim Tone3 = New Tone(SignalLevel.IndBV(-6), Frequency.InHz(100))

' Create a multi-tone signal using the new operator and Tone objects
Dim T = New MultiToneSignal(Tone1, Tone2, Tone3)

aiDevices Framework Programming Guide 63

Signal Descriptor Classes Advent Instruments Inc.

14.7. Multi-Tone Sequence
The MultiToneSequence allows developers to define more complicated signals defined
using a sequence of arbitrary multi-tone signals with specific timing. Such signals might
include:

• DTMF Dialing – dialing sequences are defined as a sequence of DTMF digits.
Note: each successive digit may be specified completely independently of the
other digits.

• Special Information Tones – many telephone networks generate a very special
sequence of tones (with particular frequencies and cadence) when a call could
not be completed for a variety of reasons.

• Payphone Recognition Tones – which are a typically sequence of 1 or 2 tones
which are generated when a pay telephone recognizes payment.

The MultiToneSequence class exposes the following members:

• Tones – returns a list of the multi-tone signals specified in the sequence in order
of transmission (see section 14.6).

• Cadence – returns the descriptor which defines the timing of the signals (see
section 14.4)

• Name – returns a descriptive name for the signal pattern

The sequences can be created using constructors or through static Create functions.

Examples:

Dim Level = SignalLevel.IndBV(-10)
Dim OnTime1 = TimeInterval.InMilliseconds(330)
 Dim OnTime2 = TimeInterval.InMilliseconds(274)
 Dim OnTime3 = TimeInterval.InMilliseconds(200)

 ' 3 sequential ascending tones with equal timing
 Dim S = MultiToneSequence.Create("Special Information Tone)", _
 Cadence.AdjacentTiming(OnTime1, OnTime1, OnTime1), _
 New Tone(Level, Frequency.InHz(985)), _
 New Tone(Level, Frequency.InHz(1428)), _
 New Tone(Level, Frequency.InHz(1776)))

Dim Tone1 = New MultiToneSignal(Level, _
 Frequency.InHz(1100), _
 Frequency.InHz(1750))

Dim Tone2 = New MultiToneSignal(Level, _
 Frequency.InHz(750), _
 Frequency.InHz(1450))

' 2 separate dual tone signals 200 ms each separated by 274 ms
Dim S = New MultiToneSequence("Payphone Recognition", _
 New Cadence(OnTime3, OnTime2, OnTime3), _
 Tone1, Tone2)

' Creates a multi-tone sequuence containing DTMF dialing
 Dim Dialing = DTMF.CreateDTMFDialing("5551234", _
 SignalLevel.IndBm(-5), _
 Durations:=OnTime1, _
 InterDigit:=OnTime2)

aiDevices Framework Programming Guide 64

Advent Instruments Inc. Signal Descriptor Classes

14.8. Dual-Tone Signals
A dual-tone signal is a specialization of a multi-tone signal that applies to signals with
only two simultaneously applied tones. This specialization directly applies to:

• DTMF signals (see section 14.9)

• CAS/DTAS signals (see section 14.10)

• Many call progress tones (which vary depending on region)

The DualToneSignal class inherits from MultiToneSignal and adds the following
members:

• HighTone – this returns the tone definition within the signal with the higher
frequency

• LowTone – this returns the tone definition within the signal with the lower
frequency

• Twist – this returns the difference in level between the two tones expressed as a
ratio (high frequency level / low frequency level).

Examples:

Dim Tone1 = New Tone(SignalLevel.IndBV(0), _
 Frequency.InHz(440))
Dim Tone2 = New Tone(SignalLevel.IndBV(-3), _
 Frequency.InHz(480))

' Each tone can ne completly specified individually
Dim RingBack = New DualToneSignal(Tone1, Tone2)

' Signal with total level of -12 dBV and two
' sinusoidal tones with equal levels
Dim DialTone = New DualToneSignal(Frequency.InkHz(350), _
 Frequency.InkHz(440), _
 SignalLevel.IndBV(-12))

' Signal with total level of -6 dBV and two
' sinusoidal tones with 3 dB twist
 Dim Busy = New DualToneSignal(Frequency.InkHz(480), _
 Frequency.InkHz(620), _
 SignalLevel.IndBV(-6), _
 UnitlessQuantity.IndB(3))

aiDevices Framework Programming Guide 65

Signal Descriptor Classes Advent Instruments Inc.

14.9. Dual Tone Multiple Frequency Signals
Dual Tone Multiple Frequency (DTMF) signals are a specialization of a dual-tone signal
which is commonly used in telephony networks as a form of in-band signaling. DTMF is
used as the signaling method for touch tone dialing, an acknowledgement signal in
certain Caller ID sequences, and even as a method of Caller ID delivery in certain
regions.

Each DTMF signal consists of a combination of two tones selected from a 4x4 matrix
which relates them to a particular key on a touch tone phone. Each key then corresponds
to a row and column frequency as shown in Figure 13.

Figure 13DTMF Signal Matrix

 Column Frequency

 1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

R
ow

 F
re

qu
en

cy

941 Hz * 0 # D

The four keys in the rightmost column are historically used for network signals not
related to dialing.

For the purposes of this document:
• The dual tone frequency specification above will be called a “DTMF signal”
• A particular finite duration instance of a DTMF may further be referred to as a

“DTMF digit”.

DTMF signals are specified by many different standard bodies which can vary slightly in
exact specification; however the following general characteristics apply:

• Each DTMF signal must contain two sinusoidal tones each of which differ from
the nominal frequencies in Figure 13 by a small percentage

• The difference in signal level between the two tones must not exceed a
particular ratio; often specified as twist and expressed in decibels (dB).

• Each DTMF digit must have a minimum duration but beyond this requirement
may be ambiguous in duration (callers may press and hold a touch tone key as
long as they like during which DTMF will be generated).

To address all the different factors required to represent the DTMF signal template,
represent DTMF signals, and specific detected signals aiDevices defines three separate
classes as illustrated below:

aiDevices Framework Programming Guide 66

Advent Instruments Inc. Signal Descriptor Classes

Figure 14 DTMF Class Diagram

In general:

• The DTMF class describes any dual tone signal which conforms to the DTMF
frequency specification

• The DTMFDigit class describes a DTMF signal of finite duration without regard
to absolute timing or usage.

• The DetectedDTMFDigit class represents a specific instance of a DTMF digit
which has been detected and reported by an instrument.

14.9.1. DTMF
The DTMF class abstracts the DTMF frequency specification shown in Figure 13 but
does not specify timing, duration, or instance specific values which are handled by
derived classes. The DTMF class inherits from DualToneSignal and defines the following
additional members:

• Key – returns the label in the DTMF matrix which corresponds to the signal
frequencies with the signal (see Figure 13)

• RowTone – returns the Tone object which contains the row frequency

• ColumnTone –returns the Tone object which contains the column frequency

The DTMF class also exposes several static members which expose some shortcuts for
dealing with the row/column frequency and key mapping:

• GetKey – this static function accepts a set of frequencies and returns the closest
matching DTMF key.

• GetRowFrequency – this accepts a DTMF key character and returns the
corresponding nominal row frequency

• GetColumnFrequency – this accepts a DTMF key character and returns the
corresponding nominal column frequency

• Keys – this exposes an array of characters containing all valid DTMF key
values.

• IsDTMFKey – function which returns true if the argument passed is a valid
DTMF key character.

aiDevices Framework Programming Guide 67

Signal Descriptor Classes Advent Instruments Inc.

Examples:

 ' Creates a DTMF '3' signal with equal row and column levels
 Dim D As New DTMF("3"c, SignalLevel.IndBV(-8))

 ' Creates a DTMF '3' signal with 3 dB twist
 Dim D As New DTMF("D"c, SignalLevel.IndBV(-8), _
 UnitlessQuantity.IndB(3))

 ' static functions (returns values commented)
 DTMF.GetRowFrequency("#"c) ' returns 941 Hz
 DTMF.GetColumnFrequency("3"c) ' returns 1477 Hz
 DTMF.IsDTMFKey("3"c) ' returns True
 DTMF.IsDTMFKey("P"c) ' returns False
 DTMF.GetKey(Frequency.InHz(697), _
 Frequency.InHz(1209)) ' returns '1'

14.9.2. DTMF Digit
The DTMFDigit class derives from the DTMF class and abstracts DTMF signals with a
finite duration The DTMFDigit class exposes the following members in addition to those
exposed by the DTMF class:

• Duration – specifies the duration of the DTMF digit

Complete DTMF dialing sequences can be created using the MultiToneSequence class
defined in section 14.7 or through the static DTMF.CreateDTMFDialing functions.

Example:

 // Creates a DTMF 'D' for 45 ms
 DTMFDigit Ack = new DTMFDigit('D',
 SignalLevel.IndBV(-10),
 TimeInterval.InMilliseconds(45));

 TimeInterval X = Ack.Duration; // 45 ms

aiDevices Framework Programming Guide 68

Advent Instruments Inc. Signal Descriptor Classes

14.9.3. Detected DTMF Digit
The DetectedDTMFDigit class is the most specific of the DTMF signal classes and
represents a singular occurrence of a DTMF digit that was detected by an instrument at a
particular time. DetectedDTMFDigit objects are created exclusively by device objects
when DTMF is detected and reported through notifications described in section 10.1.3.
The DetectedDTMFDigit class inherits from the DTMFDigit class and exposes the
following additional members:

• Time – reports the instant in time corresponding to the start of the detected
DTMF digit

In future releases this class may report more specific information regarding DTMF
signals including any measurements or analysis which may have been performed on the
detected signal.

14.10. CAS/DTAS Signals
Many telephony standards specify a dual-tone signal which is used to alert equipment of
subsequent incoming Caller ID messages. Most standard bodies refer to this signal as
either:

• Customer Premises Equipment Alerting Signal (CAS); or

• Dual Tone Alerting Signal (DTAS)

The aiDevices framework and this document refer to this alerting signal as ‘CAS’ but
assumes that names CAS and DTAS may be used interchangeably and refer to the same
signal type.

While the details of the specification vary slightly between each standard, in general the
signal is defined as:

• An AC signal which consists of two simultaneously applied sinusoids; where

• The sinusoids have nominal frequencies of 2130 Hz and 2750 Hz; and

• The signal is applied for a specific period of time; Usually 75ms or 100ms.

To address all the different factors required to represent the CAS signals, aiDevices
defines two classes as illustrated in Figure 15. Note: since CAS includes a fixed duration
requirement there are no CAS signal objects that do not implement IFiniteSignal.

aiDevices Framework Programming Guide 69

Signal Descriptor Classes Advent Instruments Inc.

Figure 15 CAS class diagram

14.10.1. CAS
As the name suggests the CAS class represents a CAS signal defined above. Since CAS
is composed of two sinusoids it inherits from the DualToneSignal class (see section 14.8)
and exposes the following members:

• Duration – returns the duration of the CAS signal.

In addition, the CAS class also declares the following static members:

• NominalHighCASFrequency – which returns 2750 Hz

• NominalLowCASFrequency –which returns 2130 Hz

Example:

// Creates a CAS signal using twist
CAS Alert = new CAS(SignalLevel.IndBV(-20), // -20 dBV total
 UnitlessQuantity.IndB(-1), // -1dB Twist
 TimeInterval.InMilliseconds(75)); // 75 ms

// Creates a CAS with non-nominal frequencies and durations
CAS Alert2 = new CAS(CAS.NominalLowCASFrequency * 1.01, // 2130 Hz + 1%
 CAS.NominalHighCASFrequency * 0.99, // 2750 Hz - 1%
 SignalLevel.IndBV(-20),
 UnitlessQuantity.IndB(-1),
 TimeInterval.InMilliseconds(75) * 1.02); // 75 ms + 2 %

aiDevices Framework Programming Guide 70

Advent Instruments Inc. Signal Descriptor Classes

14.10.2. Detected CAS
The DetectedCAS class represents a singular occurrence of a CAS signal that was
detected by an instrument at a particular time. DetectedCAS objects are exclusively
created by device classes when CAS is detected and reported through notifications
described in section 10.1.3. The DetectedCAS class inherits from the CAS class and
exposes the following additional members:

• Time – reports the instant in time corresponding to the start of the detected CAS
signal.

In future releases this class may report more specific information regarding CAS signals
including any measurements or analysis which may have been performed on the
detected signal.

14.11. Metering Pulse Signals
Metering pulses are signals typically sent by telephone exchanges to telephones to inform
the customer of the relative expense of a phone call in progress. Usually each pulse
represents a particular incremental cost and more expensive calls will result in more
pulses sent per minute. Metering pulse definitions vary depending on region and
equipment manufacturer however generally a metering pulse can be defined as

• An AC signal which consists of a single sinusoid; where

• The sinusoid has a consistent frequency (usually 12 kHz or 16 kHz); and

• Is applied for a finite period of time (which can vary but is generally longer than
45 ms)

To address all the different factors required to represent metering pulse signals, aiDevices
defines three classes as illustrated in Figure 16.

Figure 16 Metering Pulse Class Diagram

aiDevices Framework Programming Guide 71

Signal Descriptor Classes Advent Instruments Inc.

14.11.1. MeteringPulseSignal Class
The MeteringPulseSignal class describes the metering pulse specification described in
14.11. This class does not however specify timing, duration, or instance specific values
which are handled by derived classes. The MeteringPulseSignal class inherits from Tone
and exposes the following addition members:

• Name – returns a description of the signal

14.11.2. MeteringPulse Class
The MeteringPulse class derives from the MeteringPulseSignal class and represents a
particular metering pulse with a particular finite duration. At this level of abstraction this
class can represent any metering pulse regardless of usage (transmitted, detected, etc).
The MeteringPulse class exposes the following members in addition to those exposed by
the DTMF class:

• Duration – specifies the duration of the DTMF digit

Examples:

 ' defines a metering pulse as 0.2 Vrms at 12 kHz for 200 ms
 Dim MP As New MeteringPulse(SignalLevel.InVrms(0.2), _
 Frequency.InkHz(12), _
 TimeInterval.InMilliseconds(200))

14.11.3. DetectedMeteringPulse
The DetectedMeteringPulse class represents a singular occurrence of a metering pulse
that was detected by an instrument at a particular time. DetectedMeteringPulse objects
are exclusively created by device classes when a metering pulse is detected and reported
through notifications described in section 10.1.3. The DetectedMeteringPulse class
inherits from the MeteringPulse class and exposes the following additional members:

• Time – reports the instant in time corresponding to the start of the signal.

In future releases this class may report more specific information regarding metering
pulse signals including any measurements or analysis which may have been performed
on the detected signal.

14.12. Ringing Signals
Ringing signals are typically very high voltage AC signals which are generated by a
Central Office (CO) and are detected by TEs (phones) to cause them to make a sound (or
other indication) which alerts the customer to an incoming phone call. While ringing
signals vary from region to region, it can be defined as:

• A high voltage periodic AC signal; where

• The signal has a stable fundamental frequency (typically between 10 Hz and 100
Hz); and

• Is applied for a finite period of time; usually with a particular cadence.

aiDevices Framework Programming Guide 72

Advent Instruments Inc. Signal Descriptor Classes

To address all the different factors required to represent ringing signals, aiDevices
defines three classes as illustrated in Figure 17.

Figure 17 Ringing Class Diagram

14.12.1. Ringing Class
The Ringing class describes a ringing signal without specifying timing, duration, or
instance specific values which are handled by derived classes. The Ringing class inherits
from the Tone class and exposes the following addition members:

• Name – returns a description of the signal

• DC – specifies the DC offset of the ringing signal

14.12.2. RingingBurst Class
The RingingBurst class derives from the Ringing class and represents a particular ringing
signal with a particular finite duration. At this level of abstraction this class can represent
any ringing signal regardless of usage (transmitted, detected, etc). The RingingBurst class
exposes the following members in addition to those exposed by the DTMF class:

• Duration – specifies the duration of the ringing signal

Examples:

 Dim R = New RingingBurst(SignalLevel.InVrms(80), _
 Frequency.InHz(22), _
 DCVoltage.InVolts(48), _
 TimeInterval.InSeconds(1))

aiDevices Framework Programming Guide 73

Signal Descriptor Classes Advent Instruments Inc.

14.12.3. DetectedRingingBurst Class
The DetectedRingingBurst class represents a singular occurrence of a ringing burst that
was detected by an instrument at a particular time. DetectedRingingBurst objects are
exclusively created by device classes when a metering pulse is detected and reported
through notifications described in section 10.1.3. The DetectedRingingBurst class inherits
from the RingingBurst class and exposes the following additional members:

• Time – reports the instant in time corresponding to the start of the signal.

In future releases this class may report more specific information regarding metering
pulse signals including any measurements or analysis which may have been performed
on the detected signal.

14.13. Telephone Line State Changes
Much of the basic signaling in analog telephony is achieved through changes in telephone
line state defined by line voltage and loop current (see section 13.4). These changes in
telephone line states are described by several different classes illustrated below.

Figure 18 LineStateChange Class Diagram

14.13.1. LineStateChange Class
The LineStateChange class describes a change to a particular telephone line state as
outlined in section 13.4. The LineStateChange class exposes the following members:

• Name – returns a description of this signal

• State – returns the new telephone line state

aiDevices Framework Programming Guide 74

Advent Instruments Inc. Signal Descriptor Classes

14.13.2. DetectedLineStateChange Class
As the name suggests, the DetectedLineStateChange class describes a change in
telephone line state as detected by an instrument. Typically objects of this type are
created by device objects when a change in line state is detected and reported through
notifications described in section 10.1.3. The DetectedLineStateChange class inherits
from the LineStateChange class and exposes the following additional members:

• Time – reports the instant in time corresponding to the change in line state.

In future releases this class may report more specific information regarding the detected
change in telephone line state including

• The prior line state (if known)
• Measurements or analysis which may apply to the change in state

14.14. Telephone Line Reversals
Another signaling method within analog telephony is a line reversal which can be
characterized as a reversal in polarity of the line voltage as measured between the two
signal conductors (see section 13.5). Line reversals are described by several different
classes illustrated below.

Figure 19 Line Reversal Class Diagram

Each instrument supported by aiDevices defines a particular polarity as “Normal”.
Typically this polarity will result in negative line voltage measurements from the
telephone interface since the “normal” DC voltage feed is traditionally specified as -48
Volts. Please note:

• Changes in line polarity are specified relative to the instrument specific
“normal” polarity

• Many telephone cables are wired such that the tip and ring conductors may be
reversed resulting unexpected telephone line polarities.

aiDevices Framework Programming Guide 75

Signal Descriptor Classes Advent Instruments Inc.

14.14.1. LineReversal Class
The LineReversal class describes a change to a particular telephone line polarity as
outlined in section 13.5. The LineReversal class exposes the following members:

• Name – returns a description of this signal

• Polarity – returns the new telephone line polarity (see section 13.5)

14.14.2. DetectedLineReversal Class
As the name suggests, the DetectedLineReversal class reports a change in telephone line
polarity as detected by an instrument. Typically objects of this type are created by device
objects when a reversal is detected and reported through notifications described in section
10.1.3. The DetectedLineReversal class inherits from the LineReversal class and exposes
the following additional members:

• Time – reports the instant in time corresponding to the change in line reversal.

In future releases this class may report more specific information regarding the line
reversal

14.15. Line Flash Signals
Within analog telephony a line flash (also known as hook flash) is a signaling method
used by Terminal Equipment (TE) to signal a central office by quickly hanging up and
then picking up again. Historically this signal has been used to activate features such as
call waiting or three way calling. Regardless of the usage, the line flash signal can be
generally defined as

• A transition in telephone line state

o Starting ‘off hook’; then

o Briefly ‘on hook’; then

o Ending ‘off hook’

• Where the duration of the on-hook period can vary but generally does not
exceed a second

Some of the instruments supported within aiDevices have the capability to bridge the
telephone line to monitor and report signals. With this in mind the aiDevices framework
also allows an additional definition of a line flash as:

• A transition in telephone line state

o Starting ‘in use’; then

o Briefly ‘on hook’; then

o Ending ‘in-use’

aiDevices Framework Programming Guide 76

Advent Instruments Inc. Signal Descriptor Classes

14.15.1. LineFlash Class
The LineFlash class describes a line flash signal defined in section 14.15 at a very high
level without regard to particular line states. This class defines the following members:

• Duration – this returns the duration on the line flash.

14.15.2. DetectedLineFlash
The DetectedLineFlash class describes a particular line flash signal as detected by an
instrument. DetectedLineFlash objects are exclusively created by device classes when a
line flash is detected and are reported through notifications described in section 10.1.3.
The DetectedLineFlash class inherits from the LineFlash class and exposes the following
additional members:

• Time – reports the instant in time corresponding to the start of the line flash

• LeadingEdge – returns the DetectedLineStateChange object (see section
14.13.2) which corresponds to the beginning of the line flash signal

• TrailingEdge – returns the DetectedLineStateChange object that corresponds to
the end of the line flash signal

In future releases this class may report more specific information regarding this detected
signal possibly including measurements.

14.16. Open Switching Interval (OSI) Signals
Within analog telephony an Open Switching Interval (OSI) is a signaling method which
can be used by a central office to signal a phone or other terminal equipment. Depending
on the region and context this signal can be used to:

• Signal the terminal equipment to release the line (hang up)

• Signal the terminal equipment that Caller ID is about to be delivered.

 Regardless of the usage the OSI signal can be generally defined as

• A temporary removal of DC feed which causes a brief transition into the
‘disconnected’ state; where

• The duration of the disconnected period can vary but generally does not
typically exceed one second

aiDevices Framework Programming Guide 77

Signal Descriptor Classes Advent Instruments Inc.

14.16.1. OSI Class
The OSI class describes an open switching interval defined in section 14.16 at a very high
level without regard to particular line states. This class defines the following members:

• Duration – this returns the duration of the signal

• Name – this returns a description of the signal

This class can be used:

• To define an OSI signal to be generated by a supporting instrument

• To report OSI information without regard to the specific changes in line state

14.16.2. DetectedOSI Class
The DetectedOSI class describes an OSI signal as detected by an instrument.
DetectedOSI objects are exclusively created by device classes when an OSI is detected
and is reported through notifications described in section 10.1.3. The DetectedOSI class
inherits from the OSI class and exposes the following additional members:

• Time – reports the instant in time corresponding to the start of the OSI

• LeadingEdge – returns the DetectedLineStateChange object (see section
14.13.2) which corresponds to the beginning of the signal

• TrailingEdge – returns the DetectedLineStateChange object that corresponds to
the end of the signal

In future releases this class may report more specific information regarding this detected
signal possibly including measurements.

aiDevices Framework Programming Guide 78

Advent Instruments Inc. Signal Descriptor Classes

14.17. Pulse Dialing Signals
Before the advent of touch tone dialing, analog telephones used pulse dialing as a method
to signal the central office with the desired telephone number to call. Each digit was
signaled by repeatedly going on and off hook in rapid succession where the digit is
specified by the number of resulting pulses. The aiDevices framework defines two
classes which describe pulse dialing signals.

14.17.1. PulseDialingDigit Class
The PulseDialingDigit class represents a single pulse dialing digit without regards to
timing or particular line state transitions. This class exposes the following members:

• Digit – this returns a character corresponding to the dialed digit represented by
this signal (‘0’ to ‘9’)

• AverageMakeInterval – this returns the average time interval between on-hook
pulses. For the digit ‘1’ this returns zero

• AverageBreakInterval – this returns the average duration of the on-hook pulses
in this signal

• PulsesPerSecond – this returns the number of pulses per second expressed as a
frequency

• BreakPercentage – this returns the ratio of the average on-hook interval to the
average period of the signal.

• PulseCount – this returns the number of pulses within this digit

• Duration – this returns the duration of this signal

• Name – returns a description of this signal

14.17.2. DetectedPulseDialingDigit Class
The DetectedPulseDialingDigit class describes a particular instance of a pulse dialing
digit that has been detected and reported by an instrument. This class inherits the
PulseDialingDigit class and exposes the following additional members:

• Edges – this returns a list of the DetectedLineStateChange objects which
comprise the detected pulse dialing digit. Applications can derive their own
statistics from these signals if desired.

• Time – this returns the time corresponding to the first edge of the pulse dialing
digit

aiDevices Framework Programming Guide 79

Signal Descriptor Classes Advent Instruments Inc.

14.18. Frequency Shift Keying (FSK) Signals
Many signaling methods (such as Caller ID) use the Frequency Shift Keying (FSK)
modulation technique in order to convey digital information within the voice band of a
telephone network. A simplified illustration is shown in Figure 20. An FSK signal is one
in which

• A sinusoidal carrier signal is modulated to convey binary information by
shifting between two discrete carrier frequencies; where

o The frequency assigned to a logic ‘1’ is referred to as the mark
frequency

o The frequency assigned to a logic ‘0’ is referred to as space frequency

• Each bit is transmitted in a serial fashion and each will modulate the carrier
signal for an equal time

• The baud rate describes the rate at which bits are modulated in the FSK signal
(and is the inverse of the bit duration)

Figure 20 FSK Signal Example

When describing an FSK signal often it is convenient to separate the signal into logical
layers which can be treated separately during synthesis and analysis. These layers are:

• Data Layer – this describes the “message” that is conveyed by the FSK signal
which is independent of any formatting or encoding specification

o General FSK data formats are documented in section 14.18.4

o Caller ID Data formats are documented in section 15

• Presentation Layer – this layer is concerned with the encoding of the message
contents into a bit pattern suitable for FSK modulation as well as any extra
signaling required apart from the message contents.

o Caller ID presentation layer is documented in section 15.1

• Physical Layer – this layer describes the modulation parameters required to
modulate the FSK signal. This includes mark and space frequencies, signal
level, baud rates, etc.

o Physical signaling settings are documented in section 14.18.1.

o Bit patterns used to modulate FSK are documented in section 14.18.2.

aiDevices Framework Programming Guide 80

Advent Instruments Inc. Signal Descriptor Classes

14.18.1. FSK Physical Settings
The FSKPhysicalSettings class is responsible for describing all the physical parameters
required to modulate an FSK signal. This class does not deal with any details relating to
the modulating signal but rather exposes the following members:

• MarkFrequency – specifies the frequency of the mark signal

• SpaceFrequency – specifies the frequency of the space signal

• MarkLevel – specifies the signal level of the mark carrier

• SpaceLevel – specifies the signal level of the space carrier

• Twist – reports the ratio of the mark and space level.

• Baud – specifies the rate at which bits will be modulated

• MarkBitDuration / SpaceBitDuration – these properties specify the duration
of mark and space bits independently which can be used to simulate bit-skew. In
an ideal signal these values should be identical and the inverse of the baud rate.

This class also exposes several static functions which help construct signal settings based
on standard definitions:

• GetMarkFrequency / GetSpaceFrequency – returns the nominal signaling
frequencies specified by a standard body which is passed by argument

• GetBaud – returns the nominal baud rate specified by a standard body which is
passed by argument

• GetDefaults – these overloaded functions return nominal FSK signal settings
specified by a standard body which is passed by argument

• CalculateTwist – this function assists in twist calculations for FSK signals
(which differ from those for dual tone signals!)

Examples:
' Note: named parameters are shown for clarity but are not required!
' 1 Vrms FSK with 1200+2200 Hz carriers and 1200 baud
Dim S = New FSKPhysicalSettings(MarkFrequency:=Frequency.InHz(1200), _
 SpaceFrequency:=Frequency.InHz(2200), _
 CarrierLevel:=SignalLevel.InVrms(1), _
 Baud:=Frequency.InHz(1200))

' Fully specified FSK physical parameters
S = New FSKPhysicalSettings(MarkLevel:=SignalLevel.IndBm(-4), _
 Spacelevel:=SignalLevel.IndBm(-3), _
 MarkFrequency:=Frequency.InHz(1203), _
 SpaceFrequency:=Frequency.InHz(2207), _
 MarkBitDuration:=TimeInterval.InMilliseconds(0.833), _
 SpaceBitDuration:=TimeInterval.InMilliseconds(0.831))

' Nominal FSK settings for ETSI Caller ID and -10dBV carrier level
S = FSKPhysicalSettings.GetDefaults(CallerIDStandardBody.ETSI, _
 SignalLevel.IndBV(-10))

' Nominal FSK settings for TIA Caller ID, -10dBV average level, 3 dB Twist
S = FSKPhysicalSettings.GetDefaults(CallerIDStandardBody.TIA_Telecordia,
 AverageLevel:=SignalLevel.IndBV(-10), _
 Twist:=UnitlessQuantity.IndB(3))

' Returns nominal ETSI mark frequency plus 1 percent
FSKPhysicalSettings.GetMarkFrequency(CallerIDStandardBody.ETSI) * 1.01
' Returns nominal TIA baud rate less 2 percent

FSKPhysicalSettings.GetBaud(CallerIDStandardBody.TIA_Telecordia) * 0.98

aiDevices Framework Programming Guide 81

Signal Descriptor Classes Advent Instruments Inc.

14.18.2. Bit Patterns
An FSK signal can generally described as a sinusoidal carrier which switches between
two distinct frequencies depending on the binary modulation signal; where ‘1’
corresponds to the mark carrier frequency and the ‘0’ corresponds to the space carrier
frequency (see Figure 20). The modulating signal can then be described as a sequence of
bits which sequentially modulate the carrier to produce the FSK signal. The BitPattern
class represents this sequence of bits and is used internally to specify the FSK modulating
signal. The BitPattern class exposes the following members:

• BitCount – returns the number of bits within the pattern

• Clear – this method removes all bits from within the pattern

• AddBit – this method appends a bit to the end of the pattern

• SetBit – this methods sets a bit value at a particular index in the pattern

• GetBit – this function returns a bit value at a specific index within the pattern

• AddSetBits – this method adds a sequences of ‘1’ bits to the pattern

• AddClearedBits – this method adds a sequence of ‘0’ bits to the pattern

• AddAlternatingBits – this method adds a sequence of alternating ‘1’ and ‘0’
bits to the pattern. Note: this alternating bit sequence is often used to generate
“channel seizure” signals in Caller ID and other standards.

• AddByte_LSBFirst – this method adds exactly 8 bits as specified to the bit
pattern starting with the least significant bit

• AddByte_MSBFirst – this method adds exactly 8 bits as specified to the bit
pattern starting with the most significant bit

This class is useful for creating modulation patterns which are not natively supported by
aiDevices however for specific data formats which are supported by aiDevices
developers are urged to use the higher level classes defined in later sections.

Unlike other descriptor classes the BitPattern class is mutable; which means the
contents can be modified after an object is created.

14.18.3. Byte Patterns
Many signaling methods which transport binary data (such as Caller ID) encode
messages using a sequence of 8-bit symbols (bytes). The BytePattern class represents just
such a sequence of bytes which can be used to generate an FSK modulating signal. The
BytePattern class exposes the following members:

• ByteCount – returns the number of bytes in the sequence

• CheckSum – this property specifies a checksum calculator object which will be
automatically updated with all bytes added to the pattern (see section 14.19).

• Clear – this method clears all bytes from the pattern and resets the checksum
calculator

• Add – this method adds a bytes, character, or string to the end of the byte
pattern and updates the checksum calculator if specified

aiDevices Framework Programming Guide 82

Advent Instruments Inc. Signal Descriptor Classes

The BytePattern class also has support for calculating parity of character values. The Add
method has an overload which can automatically calculate the parity of a character as it is
added to a data pattern. In addition the BytePattern class exposes the following static
functions:

• CalculateParity – returns the byte value of a character when the specified parity
setting is applied

While this class is useful for defining arbitrary data patterns it is most useful as a base
class for specific data formats such as FSKData and FSKCallerIDData.

Unlike other descriptor classes the BytePattern class is mutable; which means the
contents can be modified after an object is created.

14.18.4. FSK Data
The FSKData class represents a generic pattern of bytes which can be sent within an FSK
transmission. Typically this class is used:

• To describe custom FSK message contents or report those which do not conform
to formats supported by aiDevices

• As a base class for well known message formats like Caller ID

The FSKData class exposes the following members:

• Name – this returns a descriptive name of the message. Derived classes which
implement specific formats overload this property to describe message contents.

• Problems – this returns a list of objects that describe any problems with the
message format. Generally this only applies to derived classes which implement
specific message formats.

14.18.5. FSK Transmissions
The FSKTransmission class represents a single FSK signal and contains all the settings
and data necessary to transmit the signal. The FSKTransmission class exposes the
following members:

• PhysicalSettings – specifies the physical parameters for the FSK signal (see
section 14.18.1).

• BitPattern – specifies the bit pattern which will modulate the FSK signal (see
section 14.18.2).

• Duration – returns the duration of the transmission based on the number of bits
and baud rate.

• Name – returns a descriptive name for this signal

The FSKTransmission class may be used by applications to specify custom modulation
patterns which may not be natively supported by aiDevices however typically
applications will use sub-classes of the FSKTransmission classes which deal with
specific FSK encodings such as Caller ID (see section 15).

aiDevices Framework Programming Guide 83

Signal Descriptor Classes Advent Instruments Inc.

Example:

// Create an FSK transmission with default physical settings
FSKTransmission F = new FSKTransmission(
 FSKPhysicalSettings.GetDefaults());

// You can modify the BitPattern after creation!
F.BitPattern.AddAlternatingBits(200, false);

//TODO: encode more bits here!

14.19. Checksum Calculations
Many data transmission formats (like Caller ID) include a fixed length number called a
checksum which is calculated from the message contents and is used to detect errors in
transmission. The aiDevices framework abstracts the calculation of these checksums
using classes which derive from the CheckSumCalculator class. Instances of these
checksum calculators can then be passed to data pattern objects which require checksum
calculations such as BytePattern (section 14.18.3), FSKData (section 14.18.4), and
FSKCallerIDData (section 15.3).

The abstract CheckSumCalculator class exposes the following members:

• Clear – clears the contents of the checksum calculator and resets back to initial
state.

• Add – adds a byte to the checksum calculation.

• Value – this property returns the current result of the checksum calculation;
which may be one or more bytes.

At present the aiDevices framework contains the following checksum calculator classes:

• InvertedModulusChecksumCalculator – this calculates the 2’s compliment
inverse of the 8-bit sum of the message data. This format is compatible with TIA
and ETSI Caller ID messages discussed in section 15.3.

In future the aiDevices framework will support additional checksum formats such as the
NTT CRC calculations.

aiDevices Framework Programming Guide 84

Advent Instruments Inc. Caller ID (FSK) Classes

15. Caller ID (FSK) Classes

Caller ID is a general term which refers to a caller identification service which is
available in many phone networks throughout the world. These systems typically involve
in-band signaling sent from the central office to a phone (or other termination equipment)
when a new incoming call is established. Caller ID systems vary widely in terms of
capabilities and technologies but typically most services will

• Deliver telephone number and/or name of the calling party.

• Deliver information regarding new voice mail messages.

• Deliver this caller information when a new incoming call begins with no prior
call established or when an incoming call begins while an existing call is in
progress; generally used in conjunction with call waiting features.

The signaling methods and common practices for Caller ID deliver vary widely
depending on equipment manufacturer and region however a large number of Caller ID
systems use Frequency Shift Keying (FSK) signaling as described in section 14.18. In
addition to the message contents many Caller ID delivery schemes involve other
signaling methods and sequences to notify terminal equipment of incoming Caller ID
information. These other signals can include:

• CAS – this signal is typically sent in advance of off-hook Caller ID to notify the
phone of incoming FSK so it can mute the receiver to avoid disturbing the user
with the sudden and annoying sounds (see section 14.10).

• Subscriber Alerting Signal (SAS) – this signal is sent in advance of CAS to
alert the customer (not the TE) of an incoming call which may be available
through a call waiting service. The specifics of this signal are not universal and
may include single tones or even voice recordings.

• Line Reversal – some systems may reverse the polarity of the telephone line in
advance of Caller ID transmissions (see section 14.14).

• Open Switching Interval (OSI) – some systems will generate an OSI in
advance of Caller ID transmissions (see section 14.16).

• DTMF ACK – some systems require acknowledgement of the CAS signal sent
prior to Caller ID in which the phone (or TE) will send an acknowledgement
back to the central office by means of a DTMF digit (see section 14.9).

Many Caller ID standards exist which are designed to ensure consistent interoperation of
FSK based Caller ID transmissions throughout the world. The following sections contain
many features which are designed based on the following standards

• Telecommunications Industry Association (TIA)

o TIA-777-A

• European Telecommunication Standards Institute (ETSI)

o ETS 300 778

aiDevices Framework Programming Guide 85

Caller ID (FSK) Classes Advent Instruments Inc.

15.1. Caller ID Transmission
Most Caller ID transmissions follow a common signaling and encoding scheme for
generating the modulated FSK signal illustrated in Figure 21.

Figure 21FSK Caller ID Message Encoding Scheme

• Channel Seizure (optional) – many on-hook Caller ID transmissions start with
a sequence of alternating mark and space bits which can be used as a
qualification and initialize FSK demodulators. Channel seizure is not generally
present in off-hook transmissions.

• Mark Signal – most Caller ID transmissions precede the message data with a
continuous mark signal (string of ‘1’ bits). Most receivers will require minimum
mark signal duration as a qualification to decode the FSK message contents.

• Message Bytes – following the mark signal will be a sequence of bytes which
comprise the contents of the Caller ID message such that each byte is encoded as
follows:

o Start Bit – each byte is preceded by a “start” bit consisting of a single
space bit.

o Byte Value – each byte value is encoded LSB first immediately
following the start bit

o Stop Bit(s) – following each byte is one or more mark bits referred to
as “stop” bits. The duration of the stop bits is allowed to vary from byte
to byte.

• Mark Out – usually the message bytes are followed by a short duration of mark
signal before the carrier is terminated. This signal is required by some receivers
to properly decode the final byte of the message.

The FSKCallerIDTransmission class represents an FSK transmission which adheres to
the signaling and encoded scheme above. Note however that this class specifies only the
physical and presentation layers of the FSK transmission (see section 14.18) and does not
specify the message contents. The contents of the message are encoded separately via one
of the following classes

• FSKData – see section 14.18.4 for generic message formatting.

• SDMF– see section 15.3.1 for the class documentation and section 15.4 for
helper functions which create common messages based on high level
parameters.

• MDMF – see section 15.3.2 for the class documentation and sections 15.4 and
15.5 for helper functions which create these messages based on high level
parameters.

• Custom Classes – any class which inherits from FSKData and implements all of
its features may be used to specify the contents of Caller ID messages.

aiDevices Framework Programming Guide 86

Advent Instruments Inc. Caller ID (FSK) Classes

The FSKCallerIDTransmission inherits from FSKTransmission and exposes the
following additional members:

• Message – returns a class which specifies the byte pattern which is encoded as
the message contents and is used to update the modulating bit pattern before
transmission. Typically applications will specify a high level message format
object however they may specify the data pattern using any subclass of
BytePattern.

• ChannelSeizurebits – this specifies the number of alternating bits which will be
inserted at the start of the FSK transmission.

• MarkBits – this specifies the duration of the mark interval before the message
contents in bits.

• StopBits – this specifies the number of stop-bits which are inserted after each
byte encoded in the message

• MarkOutBits – this specifies the number of mark bits which are inserted after
the message contents.

• RegenerateBitPattern – this method will regenerate the bit pattern (exposed by
the FSKTransmission) based on the current settings and data message contents
specified within the FSKCallerIDTransmission object.

Unlike many other signaling objects defined within the aiDevices framework the
FSKCallerIDTransmission object is mutable; which means that the object contents can
be modified after the object is created.

The FSKCallerIDTransmission automatically regenerates the bit pattern contained
within the internal BitPattern object whenever:

• Any of the FSKCallerIDTransmission parameters are modified
• The contents of the data pattern specified in the Message parameter are

modified
• The RegenerateBitPattern method is called

However the bit pattern is not automatically updated when the contents of the
BitPattern object are manipulated. This feature is essential in order to allow applications
to intentionally create malformed bit patterns for compliance testing purposes.

aiDevices Framework Programming Guide 87

Caller ID (FSK) Classes Advent Instruments Inc.

Example:

' Creates SDMF 'Calling Number' message with the current date/time
' Note: notice the message and transmission are specified separately!
 Dim Msg = TIA.CallingNumberDeliveryMessage(CallerIDDateTime.Now, _
 "5551234")

' Creates an Caller-ID transmission which contains the above message
' with channel seizure, mark, stop bits, markout etc.
 Dim CID = New FSKCallerIDTransmission(Msg, _
 ChannelSeizureBits:=80, _
 MarkBits:=180, _
 Stopbits:=1, _
 MarkOutBits:=2, _
 PhysicalSettings:=FSKPhysicalSettings.GetDefaults)

 ' Now we can manipulate the underlying bit pattern!
 ' Note: these changes will be overwritten if any higher level
 ' property is modified!
 CID.BitPattern.SetBit(5, False)

 ' this change overwrites the above change to BitPattern!
 CID.MarkBits = 5

15.1.1. Custom Bit Encoding
By default the FSKCallerIDTransmission will automatically generate a bit pattern
corresponding to the format illustrated in Figure 21. There may however be situations
where applications may want to extend this functionality and encode the message
contents in a custom fashion. Typical reasons for this may include:

• Stop bit elongation

• Intentional data impairments such as invalid checksums, bad stop bits,
malformed channel seizure etc

• Customized or non-standard encodings

This situation is addressed by means of the BitPatternEncoder delegate declared within
the FSKCallerIDTransmission class. Applications may override the default bit encoding
by specifying a delegate method in the constructor which will be called whenever the bit
pattern needs to be regenerated.

The FSKCallerIDTransmission class exposes the static GenerateDefaultBitPattern
method which encodes the default bit pattern. This may be called within the custom
delegate if applications simply want to modify the existing encoding.

The BitPatternEncoder delegate method must remain accessible for the entire lifespan of
the FSKCallerIDTransmission object. Application developers are urged to use static
(shared) methods when specifying this delegate to guarantee this behavior.

aiDevices Framework Programming Guide 88

Advent Instruments Inc. Caller ID (FSK) Classes

Example:

// NOTE: The following 3 lines are a snippit and must be
// placed within a method!

FSKCallerIDData Msg = TIA.CallSetupMessage(
 CallerIDDateTime.Now(),
 "John Doe", "5551324");
FSKPhysicalSettings Phys = FSKPhysicalSettings.GetDefaults();

// Creates a transmission with custom bit pattern encoder!
FSKCallerIDTransmission X = new FSKCallerIDTransmission(Msg,
 0, 100, 1, 2,
 Phys, ElongateStopBits); // <- Custom encoder

// This will be called whenver the bit pattern in the above
// transmission needs to be re-generated
static void ElongateStopBits(FSKCallerIDTransmission TX)
{
 BitPattern P = TX.BitPattern;
 P.Clear();
 // Channel Seizure
 P.AddAlternatingBits(100, false);
 // Mark time
 P.AddSetBits(TX.MarkBits);
 // Message contents
 for (int i = 0; i < TX.Message.ByteCount; i++)
 {
 // Start Bit
 P.AddClearedBits(1);
 // Byte Value
 P.AddByte_LSBFirst(TX.Message.GetByte(i));
 // Stop Bit
 P.AddSetBits(1);
 //Elongate every 8th stop bit by 10 bits!
 if ((i % 8) == 0) P.AddSetBits(10);
 }
 // Mark Out
 P.AddSetBits(TX.MarkOutBits);
}

aiDevices Framework Programming Guide 89

Caller ID (FSK) Classes Advent Instruments Inc.

15.2. Caller ID Date and Time
Many Caller ID messages deliver date and time information to inform the TE (phone) of
the time when the incoming call occurred. Most of the Caller ID standards use the
following encoding format for this date and time information:

• The date/time information is encoded using a string of 8 to 10 characters
(depending on the parameter or meaning) where

• Each component of the time is represented with two digits and

• Each digit can range from ‘0’ to ‘9’

The most common date/time format (which is used in TIA and ETSI Caller ID) is
referred to within the aiDevices framework as the MMDDHHmm format where:

• The first two characters represent the month of the year and may range from
“01” to “12”

• The next two character represent the day of the month and may range from “01”
to “31”

• The next two characters represent the hour of the day (in 24 hour format) and
may range from “00” to “23”

• The final two characters represent the minute within the hour and may range
from “00 to “59”

A less common date/time format (used within some ETSI parameters) is referred to with
the aiDevices framework as the internal format which is exactly like the MMDDHHmm
format except:

• An additional two characters are appended to the end which indicate the seconds
in the minute and range from “00” to “59”

The CallerIDDateTime class deals with the date/time issues and exposes the following
members:

• Month – returns the month component of the date/time

• Day – returns the day component of the date/time

• Hour – returns the hour component of the date/time

• Minute – returns the minute component of the date/time

• Second –returns the second component of the date/time

• ToString – the ToString function is overloaded to return any of the standard
date/time formats which can be used within a Caller ID message. By default it
returns the date information in a typical format i.e. “Nov 3 3:30 pm”

• GetProblems – returns a list of problems which may be present with the date
format

This class also exposes the following static functions:

• Now – this returns the current date/time information based on the host clock

aiDevices Framework Programming Guide 90

Advent Instruments Inc. Caller ID (FSK) Classes

Examples:

' get the current time
Dim DT = CallerIDDateTime.Now

' Create a specific day/time
DT = New CallerIDDateTime(Month:=12, _
 Day:=11, _
 Hour:=5, _
 Minute:=12)

' Each return value is commented
DT.ToString() ' Dec 11 5:12 AM
DT.ToString(CallerIDDateTime.Formats.MMDDHHmm) ' 12110512
DT.ToString(CallerIDDateTime.Formats.MMDDHHmmss) ' 1211051200

15.3. Caller ID Message Formats
Since most Caller ID messages can convey similar information regardless of format each
of the classes which manage Caller ID messages derives from the abstract
FSKCallerIDData class. This class derives from FSKData and exposes several members
which apply specifically to Caller ID and can be used to extract and manipulate high
level information regardless of format.

Unlike many other objects within the aiDevices framework all Caller ID data format
classes are mutable which means that the data contents can be modified after the object
is created. This feature is essential in order to allow applications to intentionally created
malformed message contents for compliance testing purposes.

The FSKCallerIDData class exposes the following members:

• IsFormatValid – this returns false if the basic structure of the data prevents
proper interpretation of the message contents, otherwise this returns true and the
remaining properties can be considered valid. Typically this will only become
false when the message contents are modified.

• MessageType – specifies a byte which determines the meaning and format of
the data message.

• MessageLength – specifies the length of the message as encoded within the
message.

• Parity – specifies the parity settings used to encode characters within the
message

• ContainsCallingNumber – returns true if the message contains the calling
number information

• CallingNumber – returns the calling number if contained within the underlying
message. Otherwise this returns an empty string.

• ContainsCallingName – returns true if the message contains the name of the
calling party

aiDevices Framework Programming Guide 91

Caller ID (FSK) Classes Advent Instruments Inc.

• CallingName – returns the calling name information if contained within the
underlying message. Otherwise this returns an empty string.

• ContainsDateTime – returns true if the date/time information is contained
within the underlying message.

• DateTime – returns the date and time information if contained within the
underlying message. Otherwise this returns null.

All the well supported Caller ID message formats are implemented in classes which
derived from FSKCallerIDData as shown in

Figure 22FSK Caller ID Message Format Class Diagram

aiDevices Framework Programming Guide 92

Advent Instruments Inc. Caller ID (FSK) Classes

15.3.1. SDMF Message Format
One of the simplest Caller ID message formats (specified by the Telecommunications
Industry Association in TIA-777-A) is the Single Data Message Format (SMDF) which is
encoded as illustrated below.

Type Byte

Length Byte

Message Contents

[1 to 255 bytes]

Checksum Byte
Figure 23 SDMF Caller ID Format

The format of the contents is indicated by the message type byte. The two well defined
formats are:

• Calling Number Delivery (Type 0x4) which contains:

o Date/Time

o Calling Number (or reason for absence if not specified)

• Visual Message Waiting Indicator (Type 0x6) which contains:

o A flag which indicates if a new message is available

This section is a brief summary of the SDMF format. Developers are urged to refer to
TIA-777-A for a complete specification

The SDMFCallerIDData class is used to represent this SDMF message format. It inherits
from FSKCallerIDData and exposes the following additional members:

• Contents – this specifies the contents of the SDMF message interpreted as a
string.

While this class can be used to create any SDMF message the most common messages
can be easily constructed using the method declared in section 15.4.

Examples:

' 555-1234 called on Dec 25 at 8:15
Dim SDMF = New SDMFCallerIDData(4, "122508155551234")
' Same as above
SDMF = TIA.CallingNumberDeliveryMessage(_
 New CallerIDDateTime(12, 25, 8, 15),
 "5551234")

' A private number called on Dec 25 at 8:15
SDMF = New SDMFCallerIDData(4, _
 New CallerIDDateTime(12, 25, 8, 15), _
 "P")
' An “Out of area” number called on Dec 25 at 8:15
SDMF = TIA.CallingNumberDeliveryMessage(_
 New CallerIDDateTime(12, 25, 8, 15), _
 TIA.ReasonForAbsence.Out_Of_Area)

aiDevices Framework Programming Guide 93

Caller ID (FSK) Classes Advent Instruments Inc.

15.3.2. MDMF Message Format
A popular Caller ID message format is Multiple Data Message Format (MMDF) which is
specified by both the TIA and ETSI standard bodies. The basic structure of the encoding
is illustrated below.

Message Type

Message Length

Parameter 1 Type

Parameter 1 Length

Parameter 1 Contents

(Parameter 1 Length Bytes)

Parameter 2 Type

Parameter 2 Length

Parameter 2 Contents

(Parameter 2Length Bytes)

…

Checksum Byte
Figure 24 MDMF Caller ID Format

The meaning of each MDMF message is usually conveyed by the message type byte and
includes:

• Call Setup (Type 0x80)

• Visual Message Waiting Indicator (Type 0x82)

This section is a brief summary of the MDMF format. Developers are urged to refer to
one of the following standards for a complete specification.

• TIA-777-A
• ETS 300 778 or ETS 300 659

The MDMF class inherits from FSKCallerIDData and represents this MDMF format by
exposing the following members:

• ParameterCount – returns the number of parameters in the message

• GetParameter – returns a parameter at a specific index in the message

• InsertParameter – inserts a parameter at a specific place in the message

• RemoveParameter –removes a parameter from the message

Each MDMF parameter is represented using the MDMFParameter class which exposes
the following members:

• ParameterType –specifies the type value for the parameter

• Name – returns a descriptive name of the parameter which is based on the
names from the TIA and ETSI specifications

• Length – returns the length of the parameter (not including the type and length
bytes)

aiDevices Framework Programming Guide 94

Advent Instruments Inc. Caller ID (FSK) Classes

While this class can be used to create any MDMF message the most common messages
can be easily constructed using the method declared in sections 15.4 and 15.5.

Example:

// Call Setup message
MDMFCallerIDData Msg = new MDMFCallerIDData(0x80, // Call Setup
 new MDMFParameter(1, "12250815"), // Date/Time
 new MDMFParameter(2, "5551234"), // Number
 new MDMFParameter(7, "John Doe")); // Name

// Same as above using TIA helper method
Msg = TIA.CallSetupMessage(CallerIDDateTime.Now(),
 "John Doe", "5551234");

// Scan through each parameter
for (int i = 0; i < Msg.ParameterCount; i++)
{
 Debug.Print(Msg.GetParameter(i).Name);
}

// We can insert parameters into the message
Msg.InsertParameter(0, new MDMFParameter(3, "18005551234"));

// parameters can be creating using byte array arguments
Msg.InsertParameter(0, new MDMFParameter(100,
 new byte[]{1,2,3,4,5}));

aiDevices Framework Programming Guide 95

Caller ID (FSK) Classes Advent Instruments Inc.

15.4. TIA Messages
The Telecommunications Industry Association (TIA) defines many of the Caller ID
formats and signaling specifications for North America. The aiDevices framework
includes a facade class named TIA which contains helper definitions including:

• Construction functions for creating standard message types

• Enumerations for message types, parameter types, and standard values.

The standard message type and parameters type values defined in TIA-777-A are
specified by the TIA.MessageType and TIA.ParameterType enumerations with
comparable names. For example:

TIA.MessageType.Call_Setup (which has a value of 0x80)

This class contains mostly static functions which assist in the creation of MDMF and
SDMF messages. These functions include:

• CallingNumberDeliveryMessage – this returns an SDMF message containing
date/time and calling number information, or date/time and reason for number
absence

• SDMF_VMWI_Message – this returns an SDMF Visual Message Waiting
Indicator (VMWI) message.

• CallSetupMessage – returns a standard MDMF Call Setup Message

• MDMF_VMWI_Message – returns an MDMF Visual Message Waiting
Indicator message

• DateTimeParameter – returns an MDMF Date/Time parameter with a specific
date value

• CallingNumberParameter – returns an MDMF Calling Number parameter
with the number specified

• DialableDirectoryNumberParameter – returns an MDMF DDN parameter

• ReasonForAbsenceOfNumberParameter – returns an MDMF parameter
which contains the reason for the absence of the calling number

• CallingNameParameter – returns an MDMF parameter containing a calling
name

• CallQualifierParameter – returns the MDMF parameter containing the Call
Qualifier information

• VMWI_Parameter – returns the MDMF parameter containing the
activate/deactivate VMWI information.

aiDevices Framework Programming Guide 96

Advent Instruments Inc. Caller ID (FSK) Classes

Examples:

MDMFCallerIDData msg;
FSKCallerIDData D;
CallerIDDateTime Time = CallerIDDateTime.Now();

// SDMF Calling Number Delivery
D = TIA.CallingNumberDeliveryMessage(Time, "5551234");

// SDMF Calling Number Delivery with number absent
D = TIA.CallingNumberDeliveryMessage(Time,
 TIA.ReasonForAbsence.Out_Of_Area);

// SDMF VMWI Activate message
D = TIA.SDMF_VMWI_Message(true);

//MDMF Call Setup message
D = TIA.CallSetupMessage(Time,
 "Advent Instruments",
 "6049444298");

//MDMF Call Setup message with absent number
D = TIA.CallSetupMessage(Time,
 "Someone",
 TIA.ReasonForAbsence.Private_Number);

//MDMF Call Setup message with both name and number absent
D = TIA.CallSetupMessage(Time,
 TIA.ReasonForAbsence.Out_Of_Area,
 TIA.ReasonForAbsence.Private_Number);

// MDMF Call Setup message with name absent
msg = TIA.CallSetupMessage(Time,
 TIA.ReasonForAbsence.Out_Of_Area,
 "5551234");

// Inserts an MDMF Dialiable Directory Number parameter
msg.InsertParameter(0,
 TIA.DialableDirectoryNumberParameter("18005551234"));

15.5. ETSI Messages
The European Telecommunications Standards Institute (ETSI) defines many of the Caller
ID formats and signaling specifications for Europe. The aiDevices framework includes a
facade class named ETSI which contains helper definitions including:

• Construction functions for creating standard message types

• Enumerations for message types, parameter types, and standard values.

The standard message type and parameters type values defined in ETSI 300 659 are
specified by the ETSI.MessageType and ETSI.ParameterType enumerations with
comparable names. For example: ETSI.ParameterType.Calling_Line_Identity (which
has a value of 0x02)

aiDevices Framework Programming Guide 97

Caller ID (FSK) Classes Advent Instruments Inc.

This class contains mostly static functions which assist in the creation of MDMF
messages. These functions include:

• CallSetupMessage – this returns an MDMF message containing date/time,
calling name, and calling number. There are also several overloads which allow
the user to specify reasons for absence of the name or number information.

• MessageWaitingIndicatorMessage – this returns an MDMF message
containing the visual message waiting indication parameter.

• CallTypeParameter – returns the Call Type MDMF parameter

• DateTimeParameter – returns the Date/Time MDMF parameter containing a
specified date/time

• CallingLineIdentify – returns the MDMF parameter containing the number of
the calling party

• CalledLineIdentityParameter – returns the MDMF parameter containing the
called party identification

• ReasonForAbsenceOfCalledLine – returns the MDMF parameter containing
the reason for absence of the called line information

• CallingPartyNameParameter – returns the MDMF parameter containing the
name of the calling party

• ComplementaryDateTimParameter –returns an MDMF parameter containing
complementary date/time information which can be use to update clocks.

Example:

Dim M As MDMFCallerIDData
Dim Time = CallerIDDateTime.Now

' ETSI Call Setup Message
M = ETSI.CallSetupMessage(Time, "Jane Doe", "5551234")

' ETSI Message Waiting Indicator Message
M = ETSI.MessageWaitingIndicatorMessage(IndicatorOn:=True)

' You can use static functions to create MDMF parameters!
M = New MDMFCallerIDData(ETSI.MessageType.Call_Setup, _
 ETSI.CallingPartyNameParameter("A. Caller"), _
 ETSI.CallTypeParameter(ETSI.CallType.VoiceCall))

aiDevices Framework Programming Guide 98

Advent Instruments Inc. Device Support Classes

16. Device Support Classes

As mentioned in section 8.2, the majority of instrument features are managed by support
classes which can be accessed through properties of a device object. Most of these
support classes are reused on several instruments with similar features and are
documented in the following sections.

16.1. Signal Generators
Each different type of signal generator within an instrument is managed and abstracted
through a separate support class. Each of the signal generator classes will typically
expose the following interface:

• Generate – usually these methods will accept one or more signal descriptors
(see section 14) and will typically start the generation of the signal described.

• IsActive – this property will return true if the signal generator is currently active
generating a signal.

• IsBusy - this property will return true if the signal generator is either waiting to
generate a signal or is actually generating a signal.

• StopGenerator – this method will immediately stop any signal generation

Each following sub-section documents a particular type of device support object which
manages a signal generator. Please be aware of the following important notes.

The Generate methods may start or schedule the generation of a particular signal but do
not wait for the signal to complete! This is due to the fact that many signals
specifications require a very long time to complete or may continue indefinitely. If an
application must wait until the completion of the signal being generated it should:

• Use the .Wait.Until(…) features documented in section 16.3
• Respond to Notifications documented in section 10

All signal generator levels are specified as open circuit levels and will be accurate so
long as the generator is not connected to any loads (terminations). To obtain the desired
signal level when the generator is terminated you will need to adjust the generator level
to compensate for the source and termination impedance as discussed in section 13.1.1.

Many signal generators support scheduling through a single TimeStamp argument of the
Generate method which is usually named ‘AtTime’. This single argument specifies the
time (see section 9) when the specified signal should be started.

aiDevices Framework Programming Guide 99

Device Support Classes Advent Instruments Inc.

Once the Generate method has been called to schedule a signal for transmission using a
TimeStamp argument the signal generator will be ‘busy’ until the signal completes.
During this process the generator will not be able to start another signal and may not be
able to stop the generation of the scheduled signal.

Applications must be aware of communication and processing delays when scheduling
signals for transmissions. If the specified transmission time has already passed
signal generators will generate the specified signal immediately.

While delays can depend on various and unpredictable factors such as

• The number of active USB connections
• Baud rate (if COM port is used)
• Speed of the host computer
• Processing load on the application

Applications should expect at least 10 to 20 milliseconds delay in sending commands to
an instrument. For more complicated signals such as FSK these delays may be
significantly longer. To avoid the effects of these delays, applications should:

• Schedule the first transmission in a signaling sequence to occur a short time in
the future (longer than the expected communication delay)

• Use any advanced configuration option where available (i.e. FSK Generator
offers a Configure method which will upload transmission information well in
advance)

16.1.1. Tone Generator
One of the most fundamental types of signals which can be generated by most Advent
Instruments products is the simple tone (see section 14.5). Each device object which
supports simple tone generation will expose one or more ToneGenerator objects. Each
ToneGenerator object exposes the following members:

• Level – specifies the signal level of the tone to generate

• Frequency – specifies the frequency of the tone to generate

• Shape – specifies the shape of the signal to generate (see section 14.3).

• Phase – specifies the phase of the tone being generated.

• Generate – these methods start the generation of the tone with either the current
or specified settings.

• Update – these methods will update the tone generator with new level,
frequency, and shape information.

• StopGenerator – this immediately stops the tone generator.

• ResetToDefaults – this resets the tone generator back to default settings

• IsActive – returns true if the tone generator is currently generating a tone

• IsReserved – returns true if the tone generator resource is reserved by another
signal generator object. Note: When reserved all changes to this tone object will
be ignored.

• ReservedBy – returns a string containing a description of the object which has
reserved the tone generator.

aiDevices Framework Programming Guide 100

Advent Instruments Inc. Device Support Classes

Tone generators represent one of the most fundamental signal generators within most
instruments. As such these generators are often reserved by higher level signal
generators (FSK, DTMF, AM, etc). When these tone generators are reserved, accesses
to their properties will be ignored as not to interfere with higher level signal generation

Tone generator objects do not generally allow for precise timing. To generate tones with
much more accurate timing please see sections 16.1.2 and 16.1.5.

Example:

// configure Tone A with 1200 Hz sinusoid at -10 dBV
_5620.ToneA.Frequency = Frequency.InHz(1200);
_5620.ToneA.Level = SignalLevel.IndBV(-10);
_5620.ToneA.Shape = Waveshape.Sinusoiodal;

// start the tone with 90 degrees starting phase
_5620.ToneA.Generate(Phase.InDegrees(90));

Thread.Sleep(1000); // leave it active for approximately 1 second

// Update the generator with a Tone object
Tone NT = new Tone(SignalLevel.IndBm(-5), Frequency.InHz(900));
_5620.ToneA.Update(NT);

Thread.Sleep(1000); // wait again

// stop the generator!
_5620.ToneA.StopGenerator();

Defaults
The ToneGenerator object exposes a ResetToDefaults method which will reset only the
one single tone generator’s settings back to their default values. More specifically this
method will:

• Immediately stop the tone generator (if active)

• Set the signal level to 0 Volts

• Set the generator frequency to 1 kHz

• Set the wave shape to sinusoidal

aiDevices Framework Programming Guide 101

Device Support Classes Advent Instruments Inc.

16.1.2. MF Generator
The MFGenerator class manages the generation of finite duration sequences of multi-tone
signals. While the signals which can be generated may be complex the MFGenerator
class defines a very simple interface:

• Generate – causes the MF generator to transmit the specified signal; either
immediately or at a particular time

• StopGenerator – this immediately stops the MF generator

• IsActive – returns true if the MF generator is currently transmitting a signal.

The MF generator is capable of transmitting

• Multi-tone signals (or derived signal) documented in section 14.6.

• Multi-tone sequences documented in section 14.7.

Example:

' Note: real applications will need to wait for the generator to finish
With _7280.MFGenerator
 Dim Level = SignalLevel.IndBV(0)
 Dim Duration = TimeInterval.InMilliseconds(80)

 ' Generates a CAS
 .Generate(New CAS(Level, _
 TimeInterval.InMilliseconds(80)))

 ' Generate a single DTMF digit
 .Generate(New DTMFDigit("D"c, _
 Level, _
 Duration))

 ' Generated DTMF dialing
 Dim Dialing = DTMF.CreateDTMFDialing("12345", _
 Level, _
 Duration, _
 Duration)
 Duration = TimeInterval.InMilliseconds(333)

 ' 3 sequential tones with equal timing
 Dim SIT = MultiToneSequence.Create(_
 "Special Information Tone)", _
 Cadence.AdjacentTiming(Duration, _
 Duration, _
 Duration), _
 New Tone(Level, Frequency.InHz(985)), _
 New Tone(Level, Frequency.InHz(1428)), _
 New Tone(Level, Frequency.InHz(1776)))

 ' Generate a sequence of 3 tones
 .Generate(SIT)

aiDevices Framework Programming Guide 102

Advent Instruments Inc. Device Support Classes

End With

16.1.3. FSK Generator
The FSKGenerator class manages the generation of FSK signals (see section 14.18) on
supported instruments. This class exposes an interface which allows FSK to be generated
based on:

• A modulating bit pattern (section 14.18.2) and physical settings (14.18.1); or

• A fully specified FSK transmission (section 14.18.5)

To this end the FSKGenerator class exposes the following members:

• ResetToDefaults – this resets the internal FSK generator settings back to
default settings and clears any configured transmissions.

• Configure – this configures the generator with an FSK transmission so it may
be transmitted at a later time with less latency

• Generate – these methods start the generation of an FSK signal either
immediately or at a specific time

• StopGenerator – this stops any FSK transmissions in progress

In general when the FSK generator is started or stopped within an instrument the device
object generates notifications which inform the application of the exact timing and
status (see section 0).

Examples:

/* ---
* Example 1: FSK Caller ID
*/
MDMFCallerIDData Msg;
FSKPhysicalSettings Phys;
FSKCallerIDTransmission TX;

// Create a Caller ID message
Msg = TIA.CallSetupMessage(CallerIDDateTime.Now(),
 "John Doe", "5551234");
Phys = FSKPhysicalSettings.GetDefaults();

// Create an FSK transmission with mark, stopbits, and markout
TX = new FSKCallerIDTransmission(Msg,
 0, 100, 1, 2,
 Phys);
// Start the FSK generator!
_5620.FSKGenerator.Generate(TX);

/* ---
 * Example 2: FSK based on bit pattern
 */

aiDevices Framework Programming Guide 103

Device Support Classes Advent Instruments Inc.

 BitPattern BP = new BitPattern();
 BP.AddAlternatingBits(100, true); // 101010101...
 BP.AddSetBits(100); // 111111111...

 // Generate FSK modulated with a bit pattern
 _5620.FSKGenerator.Generate(BP,Phys);

16.1.4. AM Generator
The AMGenerator class manages the generation of Amplitude Modulated (AM) signals
on supported instruments. The public interface is quite simplistic and includes:

• Generate – these methods start the generation of an amplitude modulated tone
specified using an AMTone object (see section 14.5.1). This method will
reserve two ToneGenerator objects available within the instrument.

• StopGenerator – this immediately stops the generation of an AM tone and
releases any tone generators which were reserved within the instrument.

• Update – this updates the AM generator signal settings when an AM signal is
being generated.

• IsActive – returns true when the AM generator is actively generating an
amplitude modulated signal.

• IsReserved – returns true if the generator is reserved by another signal generator
object. Note: When reserved all changes to this object will be ignored.

• ReservedBy – returns a string containing a description of the object which has
reserved the generator.

To generate AM signals with more precise timing, developers should use the Pattern
Generator documented in section 16.1.5.

The AM generator can be reserved by higher level signal generator objects. When these
tone generators are reserved methods and property modifications will be ignored as not
to interfere with higher level signal generation.

Examples:

// define an AM signal with peak level of 1 Vrms
AMTone AM = new AMTone(SignalLevel.InVrms(1),
 Frequency.InkHz(1), // 1 kHz
 Waveshape.Sinusoiodal, // sine carrier
 50, // 50% modulation
 Frequency.InHz(50), // 50 Hz modulating
 Waveshape.Triangular); // triangle shape

// Start the AM signal with 90 degrees staring carrier phase
 _5620.AMGenerator.Generate(AM,

aiDevices Framework Programming Guide 104

Advent Instruments Inc. Device Support Classes

 Phase.InDegrees(90), // carrier phase
 Phase.InDegrees(0)); // modulation phase

Thread.Sleep(1000);

 // stop the AM signal
 _5620.AMGenerator.StopGenerator();

16.1.5. Pattern Generator
Many signaling methods often require basic signals to be patterned with very specific
timing and cadence. Some examples within telephony are call-progress tones (such as
dial tone, ring-back, and busy signals). The PatternGenerator manages the generation of
signal patterns by reserving and commanding lower-level signal generators exposed by
the device object in order go generate particular patterns.

When applications need to generate a particular signal pattern they will generally:

1. Specify a multi-tone compatible signal descriptor (see section 14.6)

2. Specify a cadence (see section 14.4)

The PatternGenerator class exposes the following members

• Generate – these methods start the pattern generator with the specified signal
and pattern.

• StopGenerator – this immediately stops the generation of any active pattern
and stops all signal generators used in the pattern

• StopPattern – this immediately stops the generation of any active signal pattern
and can optionally leave the signal generators active

• IsActive – returns true while a signal pattern is being generated

Example:
' North American dial tone signal
Dim Dial = New DualToneSignal(Frequency.InHz(350), _
 Frequency.InHz(440), _
 SignalLevel.IndBV(-10))
' Stutter Dial Tone pattern
Dim Stutter = New RepeatingCadence("Stutter Dial", _
 10, True, _
 TimeInterval.InMilliseconds(100), _
 TimeInterval.InMilliseconds(100))
' Start the "dial" signal with the "stutter" pattern
_5620.PatternGenerator.Generate(Dial, Stutter)

' Wait up to 10 seconds for the pattern generator to finish
_5620.Wait.Until(ActionType.Pattern_Generator_Finished, _
 TimeInterval.InSeconds(10))

16.1.6. Noise Generator

aiDevices Framework Programming Guide 105

Device Support Classes Advent Instruments Inc.

Many applications require the simulation of noise of various different types. The
NoiseGenerator class specifically manages the generation of white noise on supported
instruments. The NoiseGenerator class exposes a very simple set of members:

• Generate – this will activate the noise generator (immediately or at a particular
time) with a specific noise level. The bandwidth of the white noise may vary
from device to device. See the device specific documentation for details.

• StopGenerator – this method will stop the noise generator immediately, or at a
particular time specified.

• Level – this property specifies the current noise level setting within the
generator. This value can be adjusted while the noise generator is active.

Examples:

//***
// Simple Example without scheduling

// Start the white noise generator
_7280.NoiseGenerator.Generate(SignalLevel.InVrms(0.2));

Thread.Sleep(1000); // wait a bit

// Stop the white noise
 _7280.NoiseGenerator.StopGenerator();

///**
// Example generating FSK with synchronous noise
FSKCallerIDData Msg;
FSKCallerIDTransmission TX;

// Create Caller ID message
Msg = TIA.CallSetupMessage(CallerIDDateTime.Now(),
 "John Smith", "5551234");
// Create an FSK transmission containing this message
TX = new FSKCallerIDTransmission(Msg, 0, 100, 1, 3,
 FSKPhysicalSettings.GetDefaults());

// Calculate a time T in the future to send FSK
TimeStamp T = _7280.Time.MostRecent() + TimeInterval.InSeconds(1);

// Schedule the FSK to start at time T
 _7280.FSKGenerator.Generate(TX, T);

// Schedule the noise to start a bit before FSK
// (remember the FSK hasn't happened yet!)
_7280.NoiseGenerator.Generate(SignalLevel.IndBV(-35),
 T - TimeInterval.InMilliseconds(15));

// Schedule the noise to stop a bit after FSK
_7280.NoiseGenerator.StopGenerator(
 T + TX.Duration + TimeInterval.InMilliseconds(25));

// NOTE: By this point these signals are scheduled but
// probably haven't started yet!
// We should wait for the sequence to finish!
_7280.Wait.Until(ActionType.Noise_Generator_Stopped,
 TimeInterval.InSeconds(4));

aiDevices Framework Programming Guide 106

Advent Instruments Inc. Device Support Classes

16.1.7. Echo Generator
Echo is a common impairment found in many networks which can usually be attributed
to impedance mismatches at some place in the transmission medium. The EchoGenerator
class manages the simulation of these echoes within supported instruments. Such echo
generators can be modeled as a multi-tap delay and gain network as illustrated below in
Figure 25.

 Figure 25Echo Generator Signal Diagram

Each tap in the echo generator consists of a delay ∆Tn and a gain An and are represented
using the Echo class which has the corresponding two members. The input signal is
delayed and scaled by each of the delay/gain networks. The outputs of the tap are then
summed with the input signal to product the combined output signal. Each delay and gain
can be adjusted independently to simulate a range of echo conditions.

• Typically each delay can be adjusted from 0 ms up to a maximum delay
imposed by the instrument (typically 25 ms however please refer to the
particular instrument’s documentation)

• Each gain can be adjusted to

o Attenuate by specifying absolute value less than one

o Amplify by specifying absolute values greater than one

o Invert by specifying negative gain values

The EchoGenerator class exposes the following members:

aiDevices Framework Programming Guide 107

Device Support Classes Advent Instruments Inc.

• TapCount – this returns the total number of echo taps which are available in the
echo generator. Note: this may vary depending on the capability and version of
the associated instrument.

• GetEcho – returns the echo definition at a particular tap in the echo generator

• SetEcho – sets the echo definition at a particular tap in the echo generator

• Update – loads the echo generator with an array of echo objects

• Generate – activates the echo generator

• StopGenerator – de-activates the echo generator

Example:

' 5 millisecond echo with -10 dB attenuation
Dim Echo1 = New Echo(TimeInterval.InMilliseconds(5), _
 UnitlessQuantity.IndB(-10))

' 12.3 millisecond echo which inverts and halves the signal level
Dim Echo2 = New Echo(TimeInterval.InMilliseconds(12.3), _
 UnitlessQuantity.InAbsolute(-0.5))

' assign each of the echo taps
_7280.EchoGenerator.SetEcho(0, Echo1)
_7280.EchoGenerator.SetEcho(1, Echo2)
_7280.EchoGenerator.SetEcho(3, Nothing) ' disable echo 3

' start the echo generator
_7280.EchoGenerator.Generate()

' TODO: generate signals here!

' stop the echo generator
_7280.EchoGenerator.StopGenerator()

aiDevices Framework Programming Guide 108

Advent Instruments Inc. Device Support Classes

16.2. Signal Detectors

16.2.1. Line State Detector
Most instruments with a telephone interface are capable of detecting telephony signals
based on changes in telephone line state (see section 14.13). These signals include:

• Line Flash (see section 14.15)

• Open Switching Interval (see section 14.16)

• Pulse Dialing (see section 14.17)

As shown in Figure 26, the LineStateDetector class monitors notifications sent by the
device object, detects patterns which correspond to valid telephony signals, and
constructs and delivers matching notifications to the device object and any listening
application.

Figure 26 Line State Detector

Detection of these signals is managed by the LineStateDetector class which is usually
accessible through the LineState property of the device object. This class exposes the
following members:

• DetectLineFlash – enables detection of line flash signals

• FlashDurationMinimum /FlashDurationMaximum – these properties specify
the range of valid flash durations which will be detected.

• DetectOSI – enables detection of OSI signals

• OSIDurationMinimum / OSIDurationMaximum – these properties specify
the range of valid OSI durations which will be detected

• DetectPulseDialing – enables detection of pulse dialing digits

aiDevices Framework Programming Guide 109

Device Support Classes Advent Instruments Inc.

• PulseBreakMinimum / PulseBreakMaximum – specifies the range of “break”
times will be detected as pulse dialing (see section 14.17).

• PulseMakeMinimum / PulseMakeMaximum – specifies the range of “make”
times which will be detected as pulse dialing (see section 14.17).

Instrument specific device classes often expose a sub-class of the LineStateDetector
class which will allow applications to configure voltage and current thresholds used to
determine the telephone line state.

16.2.2. DTMF Detector
Many of the instruments supported by aiDevices are capable of detecting DTMF signals
as documented in section 14.9. This detector can usually be configured by means of a
DTMFDetector object which can be accessed using a device object property with the
same name. A simplified illustration of a DTMF detector is show in Figure 27.

Figure 27DTMF Detector Structure

The DTMF detector can be configured using the following properties:

• LevelThreshold – specifies the minimum signal level required for both the row
and column tones for DTMF to be properly detected.

The DTMF detector also reports several measurements using the following properties:

• RowLevel / RowFrequency – returns RMS level and frequency measurements
taken after the DTMF row filter.

• ColumnLevel / ColumnFrequency – returns RMS level and frequency
measurements taken after the DTMF column filter.

16.2.3. FSK Detector
Many of the instruments supported by aiDevices are capable of detecting and decoding
FSK signals as documented in section14.18. This detector can usually be configured by

aiDevices Framework Programming Guide 110

Advent Instruments Inc. Device Support Classes

means of an FSKDetector object which can be accessed using a device object property
with the same name.

The FSK detector can be configured using the following properties:

• LevelThreshold – specifies the minimum signal level required for both the
mark and space signals for FSK to be properly detected.

In future version this class may expose more advanced filtering options and detector
configurations

16.3. Wait Manager
Events of importance are generally reported to applications from device objects by means
of notification objects (see section 10) which provide a simple yet flexible structure for
event driven and simulation applications. However this system alone can be cumbersome
when simply waiting for particular events to occur in top-down style programs. In order
to simplify these conditional wait conditions, device objects expose a WaitManager
object (usually named Wait) which enables applications to wait for a particular
notification before continuing execution. These objects:

• Simplify application structure by hiding the notification details

• Make code simpler to read and maintain

• Are completely thread safe and can be used without risk of race conditions

Most members of the WaitManager class are named “Until” and follow the same general
pattern:

• Generally the first parameter of Until specifies the condition to wait for

• The last argument is named OrTimeout and specifies the maximum amount of
time to wait for the specified condition to occur.

At present there are four overloads of the “Until” method which will:

• Wait for an ActionNotification with the specified ActionType and returns the
time at which the action occurred (or null if it did not). This is very useful when
waiting for signal generators to finish before continuing execution.

• Wait for a change in telephone line state to a specified value and returns the
DetectedLineStateChange object.

• Wait for the detection of a specific signal type and returns the corresponding
ISignal object

• Wait for a condition specified by the application by means of a delegate

Applications can still leverage the simple Wait.Until() programming structure to wait for
custom conditions by specifying a delegate function of type NotificationFilterDelegate.
This delegate function will:

• Accept a single Notification argument which should be tested to determine if it
indicates the desired condition

• Return ‘true’ if the Notification argument indicates the condition which is being
waited for.

aiDevices Framework Programming Guide 111

Device Support Classes Advent Instruments Inc.

This delegate can then be specified as an argument to one of the “Until” methods after
which it will be called to test incoming notifications to determine if they specify the
desired condition.

Functions used as NotificationFilterDelegate arguments must remain accessible and
valid during the entire duration of the wait manager Until function and will be accessed
on a thread other than the calling thread! Applications developers are urged to

• Declare such delegates as static functions
• Ensure that only local variables are accessed within the scope of the function

Examples:

DetectedLineStateChange LS;
Notification N;
TimeStamp T;
TimeInterval Timeout = TimeInterval.InSeconds(10);

//---
// Wait for a change in line state to "In-Use"
//---
LS = _5620.Wait.Until(Telephone_Line_State.In_Use,Timeout);
if (LS != null)
 Debug.Print("In Use detected " + LS.ToString());
else
 Debug.Print("Timeout!");

//---
// Go off hook 1 second and wait for it to happen
//---
_5620.TelInt.GoOffHook(_5620.Time.Now() +
 TimeInterval.InSeconds(1));
T = _5620.Wait.Until(ActionType.Telephone_Interface_Went_OffHook,
 Timeout);
if (T != null)
 Debug.Print("Detected off hook at " + T.ToString());
else
 Debug.Print("Timeout!");

//---
// Wait for DTMF '3' as specified by a custom delegate
//---
N = _5620.Wait.Until(WaitForDTMF3, Timeout);
if (N != null)
 Debug.Print("Detected " + N.ToString());
else
 Debug.Print("Timeout!");

// Delegate function used to detect DTMF '3'
static bool WaitForDTMF3(Notification N)
{
 // Check if this is a signal notification
 SignalNotification S = N as SignalNotification;

aiDevices Framework Programming Guide 112

Advent Instruments Inc. Device Support Classes

 if (S == null) return false;

 // Check if this is DTMF
 DTMF D = S.Signal as DTMF;
 if (D == null) return false;

 // Check if this is the digit 3
 return (D.Key == '3');
}

16.4. Detected Signal List
All signals detected by an instrument are reported to applications by means of
notification objects (see section 10). However this system alone can be cumbersome for
applications which:

• Are written in a top-down structure, or

• Only require information about signals detected by an instrument, and

• Do not have stringent timing requirements or do not need to take action based on
the detected signals

• Require signals to be reported in temporal order

The DetectedSignalList object provides a simple and flexible solution for just such
applications (illustrated in Figure 28). Typically this list is accessible through the
DetectedSignals property of the implementing device object and will:

• Automatically receive notifications from the device object and deal with all the
corresponding threading issues

• Records all detected signals reported in SignalDetectedNotifications objects
(see section 10.1.3) into a list. This list:

o Is automatically sorted into ascending order based on the signal start
time.

o Can grow up to a maximum capacity (reported by the Capacity
property) at which incoming signals are ignored.

• Allows the calling applications to access the contents of the list in a thread safe
manner.

aiDevices Framework Programming Guide 113

Device Support Classes Advent Instruments Inc.

Figure 28Detected Signal List

The DetectedSignalList class exposes the following members:

• Count – returns the number of detected signals recorded

• Capacity – returns the maximum number of signals which can be recorded by
the list (after which the incoming signals are ignored)

• Clear – flushes all the signals from the list

• Enable – when true incoming signals will be recorded, when false incoming
signals are ignored.

• First – returns the “oldest” signal in the list

• Item – returns the signal at the specified index in the list. An index of zero
corresponds to the “oldest” signal.

• Last – returns the “newest” signal in the list

• ExtractFirst – removes and returns the “oldest” signal in the list.

• Extract – removes and returns a signal at the specified index in the list or the
entire contents of the list.

The DetectedSignalList class is completely thread-safe and applications are free to
access members without regard to threading conflicts. However developers should
consider setting the enable property to false before indexing the contents of the
DetectedSignalList through the Item methods to ensure that incoming signals don’t
accidently change the list contents during the traversal.

aiDevices Framework Programming Guide 114

Advent Instruments Inc. Device Support Classes

16.5. Time Manager
Each instrument is responsible for managing its own time-base following the system
documented in section 9. Each device object then exposes a TimeManager object which
gives applications access to the instrument time information. The TimeManager has the
following public members:

• Epoch – this returns the time stamp corresponding to the time when the
communications were established with the instrument. In general all timing from
the device is referenced from this time.

• MostRecent – this returns the most recently polled timestamp returned from the
device. This does not incur timing delays and is only guaranteed to be within
half a second of the current instrument time.

• Now – this queries the connected instrument and returns a time stamp containing
the current device time. Note: this time value will be subject to slight
inaccuracies due to communications and processing delays.

16.6. Telephone Interfaces
A complete analog telephony circuit generally consists of

• One Central Office (CO) telephone interface (also called FXS) usually provided
by a telephone service provider. This interface provides the DC voltage and loop
current required for all other devices attached to the circuit.

• A telephone conductor containing at least two conductors (called tip and ring)

• One or more Terminal Equipment (TE) telephone interfaces (also called FXO or
CPE) connected in parallel across the tip-ring conductors. TEs are usually
phones, fax machines, modems, etc.

Figure 29 Simplified Telephone Interface Arrangements

aiDevices Framework Programming Guide 115

Device Support Classes Advent Instruments Inc.

Many Advent Instruments products contain one of these telephone interface circuits, and
while the details of each of these interfaces vary depending on implementation, each
telephone interface has certain fundamental abilities based solely on its role in the
telephone circuit. The aiDevices framework defines three interfaces which are
implemented by support classes that manage a telephone interface circuit.

The ITelephoneInterface interface is implemented by all support classes which manage
a telephone interface circuit regardless of its arrangement in the circuit. This interface
defines:

• ACImpedance – specifies the AC impedance characteristics which will be
presented by the telephone interface to the telephone line.

• Balance – specifies the AC impedance characteristic of the telephone network
as seen by the instrument. This is used in the instrument’s signal hybrid and
affects the trans-hybrid loss.

• IsOffHook – returns true if the telephone line is in the off hook state from the
telephone interface’s perspective. From the central office’s perspective this
means that a connected device is drawing significant loop current. From the
terminal equipment’s perspective this means that the hook-switch is in the off-
hook state (receiver is lifted).

• LineState – returns the telephone line state (see section 13.4) from the
perspective of the telephone interface. This state information can report a
disconnected telephone line or a telephone line which is “in use”.

The IFXSTelephoneInterface interface is implemented by classes which manage central
office (or FXS) circuitry. This interface inherits from ITelephoneInterface and defines the
very basic properties and behaviors which are required by its role in the telephone circuit:

• SourceVoltage – this specifies the on-hook DC feed voltage which will be
presented on the telephone line.

• SourceCurrent – this specifies the regulated off hook loop current which will
be available when a TE goes off hook. Note: some telephone interfaces also
support a voltage source mode

• Disconnect – this method will disconnect the telephone interface circuitry from
the telephone line.

• Connect – this method will connect the telephone interface circuitry to the
telephone line.

• IsDisconnected – returns true if the telephone interface circuitry is currently
disconnected from the telephone line.

• Reverse – this method will reverse the polarity of the telephone interface (and
thus the voltage of the DC feed voltage)

The IFXOTelephoneInterface interface is implemented by all classes which manage
Terminal Equipment (TE) telephone interface circuitry. This interface inherits from
ITelephoneInterface and defines the very basic properties and behaviors which are
required by its role in the telephone circuit:

• GoOffHook –this method will place the hook switch into the off hook state (the
analogy would be lifting the receiver on a phone)

• GoOnHook – this method will place the hook switch into the on-hook state (the
analogy would be hanging up a phone).

aiDevices Framework Programming Guide 116

Advent Instruments Inc. Device Support Classes

Please see the instrument specific documentation details for each particular telephone
interface class.

16.7. Recording and Downloading
Many Advent Instruments products are capable of making recordings of AC and DC
information and downloading it to the host computer. Each class which is responsible for
such recordings inherit from the RecordingManager class which exposes the following
interface:

• SupportedSampleRates –returns an array of Frequency objects which describe
the sample rates which may be used for recordings within the device.

• SupportedFormats – returns an array of descriptors which describe the
resolution, scale, and description of the samples which may be recorded by the
device.

• RecordingDepth – returns the maximum possible samples which can be
recorded by the instrument.

• StartRecording – this will start a finite duration recording with the maximum
possible duration and default settings. Each particular recording class may
implement several overloads which may offer more options.

• StartRecordingIndefinitely – this will start a recording which will continue
indefinitely (overwriting the oldest samples) until stopped. Each particular
recording class may implement several overloads which may offer more options.

• StopRecording – this will immediately stop any active recordings within the
instrument.

• IsRecording – returns true if samples are being recorded within the instrument

• IsRecordingIndefinitely – returns true if samples are being recording
indefinitely until stopped.

• SampleRate – sample rate currently being used for recordings.

• RecordedSamples – returns the number of samples which have been recorded

• RecordedTime – returns the duration of the recording in seconds.

• StartDownload – this starts the download of samples from the device to the
host computer. The download process is generally performed in the background
on a worker thread to a SampleWriter object which determines the destination
for the samples. An asynchronous callback method may be specified which can
be used to notify the application when the download completes.

• IsDownloading – returns true if a download is in progress.

Each particular instrument may have different requirements or restrictions on recording
and downloading. Please see the instrument specific documentation in later sections for
details.

The destination for downloaded samples must be specified using SampleWriter objects
which handle all the details required to convert the stream of samples into the required
destination format and all threading issues. Each class which is capable of receiving a
stream of downloaded samples is derived from the SampleWriter class which defines the
following members:

aiDevices Framework Programming Guide 117

Device Support Classes Advent Instruments Inc.

• IsFinished – this returns true if the download of samples is complete

• Close – this method closes the destination for samples (such as a file) and
terminates the download of samples into the destination.

The following sub-sections discuss particular SampleWriter classes which are available
within the aiDevices framework

Future releases will contain SampleWriter classes which will support additional
download formats. If you require a particular download format please contact technical
support.

16.7.1. Downloading to .WAV Files
The aiDevices framework defines the WaveSampleWriter class which manages the
details of writing download samples to a .wav file in PCM format. When multiple sources
of data are downloaded (i.e. voltage and current), this class will write the concurrent
samples in to separate channels (i.e. left and right). Each sample will be scaled into a 16
bit integer and scaled such that the 16 bit signed integer matches the full range of the
corresponding sample format.

Example:

With _7280.ACRecording

 ' records 1000 samples
 .StartRecording(.SupportedSampleRates(0), 1000)

 ' wait a while for recording to complete
 While .IsRecording
 Thread.Sleep(100)
 End While

 ' initiates a download of the samples to a wave file
 ' the method DownloadDone will be called when complete
 .StartDownload(New WaveSampleWriter("C:\test.wav"), _
 AddressOf DownloadDone)
End With

'This method is called asyncrhonously when downloading is
'complete
Private Sub DownloadDone(ByVal Writer As SampleWriter)
 ' TODO: possibly process the samples?
End Sub

aiDevices Framework Programming Guide 118

Advent Instruments Inc. AI-5620 TE Simulator

17. AI-5620 TE Simulator

One of the instruments supported by aiDevices is the AI-5620 Terminal Equipment
Simulator which

• Simulates Terminal Equipment (TE) with programmable telephone interface
characteristics

• Detects, analyzes, generates, and records telephony signals (such as DTMF,
FSK, Caller ID, Metering Pulses, etc)

• Tests the functionality and compliance of central office (FXS) equipment

For a more detailed product information and specifications please refer to the “AI-5620
User Guide” which is available at www.adventinstruments.com.

The features of the AI-5620 instrument are accessed through the AI5620_TE_Simulator
class within the aiDevices framework. Unless otherwise noted, all documentation within
the following subsections refers specifically to the AI5620_TE_Simulator class.

aiDevices Framework Programming Guide 119

http://www.adventinstruments.com/

AI-5620 TE Simulator Advent Instruments Inc.

17.1. Establishing Communications
Communications with the AI-5620 instrument can be established using one of the three
static Connect methods as documented in section 8.4. Each of these functions will behave
as follows:

• If an instrument is found which is supported by the class and communications
are established successfully, then an instance of the device object will be created
and returned. This object can then be used to control the connected instrument.

• If no supported instruments are found then null is returned.

• If an instrument is found but communications are not established correctly or the
instrument is not supported by the device class then the function will raise an
Exception which must be handled by the calling application.

When communications are established with an AI-5620 instrument through any of the
Connect methods available:

• The device object does not modify instrument settings but rather synchronizes
with the current state of the AI-5620 which may be left in a particular state by
another application. This behavior is vital in situations when connections must be
established and terminated with the AI-5620 without disturbing the telephone line
state, signal routing, or signal generators.

• If your application requires a particular instrument configuration it must call
ResetToDefaults after communications are established or adjust each device
setting to the desired state.

• Certain features (such as recording) may not be able to be completely
synchronized when communications are established and may reset such features
to default settings.

Examples:

AI5620_TE_Simulator Dev = null;
try {
 // connect to any available AI-5620
 Dev = AI5620_TE_Simulator.Connect();
 if (Dev==null)
 {
 // No AI-5620 instruments available!
 } else {
 if (Dev.Exceptions.Count !=0)
 {
 // AI-5620 is connected but has
 // reported an problem
 }
 }
}catch(Exception ex)
{
 // AI-5620 may be present but could not connect!
}

aiDevices Framework Programming Guide 120

Advent Instruments Inc. AI-5620 TE Simulator

17.2. Terminating Communications
Once an application has finished using an AI5620_TE_Simulator object it must always
call one of the Close methods before setting the object variable to null! Please refer to
section 8.6 for detailed information regarding these Close methods.

When communications are terminated with an AI-5620 instrument through a Close
method:

• All automated behavior (such as pattern generation, scheduling, etc) will stop
immediately.

• All static device settings (such as line impedances, hook switch state, signal
routing) and simple signal generators (tone generators, echo, etc) will remain in
their current states. This behavior may be desirable if the instrument is configured
within a test fixture.

• If your application requires a particular instrument state after communications are
terminated then it should call ResetToDefaults (or ensure that each instrument
setting is property configured) before calling Close

17.3. Resetting to Default Settings
In many applications it is desirable to reset the instrument settings to their defaults to
return the device to a known operating condition. The AI5620_TE_Simulator class
implements a ResetToDefaultSettings method as documented in section 8.7. In general
this will:

• Stop signal generators and reset all signal generator settings to nominal defaults

• Reset all detector settings to nominal defaults

• Reset all telephone interface settings (see section 17.6.1).

• Reset all digital outputs to “Output Low” and disable all special functions

• Reset all signal routing, measurement settings, and filters to defaults

• Reset protection mechanisms within the instrument.

This ResetToDefaultSettings does not initiate a hardware reset of the associated
instrument but rather reconfigures the instruments with “safe” default values.

aiDevices Framework Programming Guide 121

AI-5620 TE Simulator Advent Instruments Inc.

17.4. Determining Instrument Capabilities
The particular capabilities of the instrument’s hardware and firmware in combination
with the supporting device classes are reported through the Capabilities property of the
AI5620_TE_Simualtor class. The AI-5620 specific capabilities are reported using the
properties documented in the following sections.

The capabilities of the tone generator, FSK generator, noise generator, echo generator,
and metering pulse detector are reported using the standard interfaces documented in
section 8.3.

17.4.1. Telephone Interface Capabilities
The capabilities of the telephone interface are reported through the following properties

• ACResistanceMinimum
ACResistanceMaximum – reports the range of acceptable range of resistance
values which can be used to program the telephone interface ACImpedance
property.

• OffHookDCResistanceMinimum
OffHookDCResistanceMaximum – reports the acceptable range of resistance
values which can be assigned to the telephone interface OffHookDCResistance
property.

• OnHookDCResistanceMaximum – reports the maximum possible on hook DC
resistance.

• OnHookProgrammableDCResistanceMaximum
OnHookProgrammableDCResistanceMaximum – reports the supported
range of programmable on hook DC resistances which can be assigned to the
telephone interface OnHookDCResistance property.

• AvailableRingingLoads – returns an array containing the supported ringing
load values which can be assigned to the telephone interface RingerLoad
property.

17.4.2. Metering Pulse Detector Capabilities
The capabilities of the metering pulse detector are reported through the following
properties

• MeteringPulseFrequencyMaximum
MeteringPulseFrequencyMinimum – reports the range of detectable metering
pulse frequencies.

• MeteringPulseFrequencyToleranceMaximum – reports the maximum
frequency tolerance which can be specified for metering pulse detection

• MeteringPulseTemplatesMaximum – reports the maximum number of
metering pulse templates which can be simultaneously detected.

aiDevices Framework Programming Guide 122

Advent Instruments Inc. AI-5620 TE Simulator

17.5. Signal Routing and Processing
The AI-5620 instrument can be configured to route a selection of internal signals
throughout the instrument and the connectors on the front and rear panels of the
instrument in order to meet the requirements of most applications.

The signal routing capabilities of the AI-5620 can be accessed using a SignalManager
object which is accessed through the Signals property of the AI5620_TE_Simulator class.
The following sections describe the signal routing capabilities within the instrument and
highlight the corresponding programming interface; starting with the signal generators
shown in Figure 30 below.

Figure 30 AI-5620 Signal Generator Routing Diagram

The outputs of each of the fundamental signal generators are summed together to produce
the internal signal labeled “Signal Generators” as illustrated in Figure 30. This signal can
then be routed to many signal blocks through the instrument including the telephone
interface. A heavily simplified diagram of this telephone interface signal routing is shown
in Figure 31 below.

Figure 31Simplified AI-5620 Telephone Interface Routing Diagram

aiDevices Framework Programming Guide 123

AI-5620 TE Simulator Advent Instruments Inc.

Three different AC signals can be selected to be transmitted on the telephone line using
the Signals.TelIntTransmitSource property:

• Signal generator outputs (Figure 30)

• Audio input (Figure 32)

• The summation of both these signals

• No signal (silence)

This signal is then routed to the echo generator (see section 0) whose output is “TelInt
Transmit”. This signal is then transmitted onto the tip-ring interface if the AC termination
is applied (see section 18.6).

The AC voltage signal measured from the telephone interface is yet another internal
signal which is labeled “TelInt Receive” and is typically routed to the meter and signal
detectors. The AI-5620 also contains a signal hybrid (which cancels transmitted signals
from the received signals) which results in another signal labeled “TelInt Hybrid”.
Applications will tend to use this signal when attempting to isolate signals from other
devices on the telephone line from those sent by the AI-5620.

The AI-5620 is also equipped with two BNC connectors on the rear panel which can be
used as a signal source or sink for AC signals within the instrument. The signal routing
for these connectors is illustrated in Figure 32.

Figure 32 AI-5620 Audio Input/Output Routing Diagram

Audio signals from within the instrument can be routed to the “Audio Out” connector
using the following Signals properties:

• AudioOutputSource – this selects the signal which is routed to the audio output
connector

• AudioOutputGain – this selects the gain which is applied to the signal before it
is applied the audio output. This can be used to correct for losses or inversions in
external equipment or to mute the output (by setting zero gain).

aiDevices Framework Programming Guide 124

Advent Instruments Inc. AI-5620 TE Simulator

The signals routed to the meter and internal signal detectors can be selected using the
following Signal properties.

• MeterSource – this selects the internal signal which is routed to the meter for
level and frequency analysis as illustrated in Figure 33. Please see section 17.7
for more information on the meter properties and signal configurations.

• DetectorSource – this property selects the signal which is routed to each of the
AC signal detectors within the instrument (see section 17.10).

The AI-5620 is also equipped with a programmable filter bank which can be inserted into
one of several logical signal processing positions within the instrument. This “Main Filter
Bank” is configured using the following Signals properties:

• MainFilterBank – this property can be used to configure the main filter bank
with a particular filter definition (see section 13.3).

• MainFilterPosition – this property selects the position of the main filter bank
within the signal processing chain. The available settings are:

o Before Meter – this places the main filter bank before the meter
measurements (see section 17.7)

o Filtering Audio Input – this settings configures the main filter bank to
filter the signals applied to the audio input connector (as shown in
Figure 32)

o Filtering Noise Generator – this setting configures the main filter
bank to filter the noise generator output before it is summed with the
rest of the signal generator outputs (as shown in Figure 30). This
enables applications to “shape” or band-limit the noise generator
output.

17.5.1. Reset to Defaults
The SignalManager object exposes a ResetToDefaults method which will reset only the
signal routing settings back to their default values. More specifically this method will:

• Set the audio output gain to zero and set the source to “none”

• Set the audio input gain to zero

• Clear the main filter bank (no filtering) and places the filter before the meter

• Both the meter source and the detector source are configured to receive the
“TelInt Receive” signal (see Figure 31)

• The signal generators are selected as the telephone interface transmit source.

17.6. Telephone Interface
The telephone interface circuitry (FXO) of the AI-5620 is accessible through a single RJ-
11 connector on the front panel of the instrument. This interface can be connected to a
central office or other FXS circuit which will provide the DC feed voltage and loop
current required for the telephony circuit. The AI5620_TE_Simulator class allows
applications to control the features of this telephone interface circuitry through the TelInt
property of the device object. The TelephoneInterface class exposes the following
members:

aiDevices Framework Programming Guide 125

AI-5620 TE Simulator Advent Instruments Inc.

• ACImpedance – specifies the AC impedance presented on the telephone
interface when the AC termination is applied on the telephone (generally when
off hook). This impedance may be specified using:

o An Impedance object specified in section 13.2.

o One of the values returned by the FixedImpedancesAvailable list

• ACTerminationBandwidth – specifies the AC bandwidth available when the
AC termination is applied on the telephone line. When the wideband setting is
specified, the low frequency corner is reduced which allows for more accurate
low frequency transmissions.

• ACTerminationMode – specifies when the AC termination will be applied to
the telephone line (which is required to transmit AC signals). The available
settings are:

o Disconnected – the AC termination will never be applied to the
telephone line

o Connected_OfffHook (default) – the AC termination will be applied
only when off hook. This setting most accurately reflects the operation
of a normal TE.

o Connected_OnHook – the AC termination will be applied to the
telephone only when on hook.

o Connected – the AC termination is always applied to the telephone line

• Balance –specifies the AC impedance of the telephone network as seen by the
instrument. This is used in the instrument’s signal hybrid and affects the trans-
hybrid loss.

• Connect – this method will cause the telephone interface to be internally
connected; either immediately or at a specified time.

• Disconnect – this method will cause the telephone interface to be internally
disconnected; either immediately or at a specified time.

• FastSettle – when set to true the time required for DC voltages and currents to
settle when going off-hook is significantly shortened. (Typically from about
20ms to about 2ms).

• FixedImpedancesAvailable – returns a list of the fixed impedances installed
within the instrument. If optional complex impedances are installed they will
also appear in this list.

• FixedTermination – selects the fixed termination (load) which can be applied
to the telephone interface. The available settings are:

o None – no fixed terminations are applied

o Resistive_600R – a 600 Ω resistor is connected between tip and ring

o Short_Circuit – the tip and ring conductors are shorted together.

• Generate – this method will cause a line flash to be generated; either
immediately or at a specified time.

• GoOffHook – this method will cause the telephone interface hook switch to be
taken off hook; either immediately or at a specified time.

• GoOnHook – this method will cause the telephone interface hook switch to be
taken on hook; either immediately or at a specified time.

aiDevices Framework Programming Guide 126

Advent Instruments Inc. AI-5620 TE Simulator

• HighGainMuteTX – when this property is set to true, the telephone interface
transmitter will be muted and the measurement circuit gain will be increased
which allows the instrument to measure significantly lower levels signals.

• IsDisconnected –returns true if the telephone interface circuitry is currently
disconnected internally.

• IsOffHook – returns true if the telephone interface hook switch is off hook.

• LineState – returns the current detected line state (see section 13.4).

• OffHookDCResistance – specifies the DC load resistance presented by the
instrument when off hook.

• OnHookDCResistance – specifies the DC load resistance presented by the
instrument when on hook.

• SetMaximumOnHookDCResistance – this will configure the telephone
interface with the maximum possible on hook dc resistance

• RingerLoad – specifies the ringing load (in REN) which will be applied to the
telephone interface when on hook.

• ResetToDefaults – this method will reset the telephone interface to default
settings (see section 17.6.1).

Example:
Imports Advent.aiDevices.AI5620_TE_Simulator

'Assumes: Dim _5620 As AI5620_TE_Simulator

With _5620.TelInt
 ' Use TBR-21 AC impedance when off hook only!
 .ACImpedance = Impedance.TBR_21
 .ACTerminationBandwidth =TerminationBandwidth.Normal
 .ACTerminationMode =ACTerminationSetting.Connected_OffHook

 ' make DC transients settle faster when going off hook
 .FastSettle = True

 ' set resistance when off hook
 .OffHookDCResistance = Resistance.InOhms(200)

 ' set maximum possible on-hook DC resistance!
 .OnHookDCResistance = _
 _5620.Capabilities.OnHookDCResistanceMaximum

 ' assume source has 600 ohm impedance and configure
 ' the signal hybrid accordingly
 .Balance = Impedance.Resistive_600

 ' connect a 1 REN ringing load when on hook
 .RingerLoad = 1

 ' Take the telephone interface off hook
 .GoOffHook()
 Thread.Sleep(2000) ' wait a while

 ' generate a 500 ms line flash
 .Generate(New LineFlash(TimeInterval.InMilliseconds(500)))
 Thread.Sleep(2000) ' wait a while

 ' go back on hook
 .GoOnHook()
End With

aiDevices Framework Programming Guide 127

AI-5620 TE Simulator Advent Instruments Inc.

17.6.1. Reset to Defaults
The TelephoneInterface object exposes a ResetToDefaults method which will reset only
the telephone interface settings back to their default “safe” values. More specifically this
method will:

• Go on hook with maximum possible on-hook DC resistance

• Re-connect the telephone interface to the front panel (if not already connected)

• Remove all ringing loads

• Change the AC termination mode such that the line is AC terminated when off-
hook and with normal bandwidth

• Configure the AC impedance and balance setting to 600 Ω

• Remove all fixed terminations

• Un-mute the transmitter

• Disable fast setting

17.7. Meter and Measurements
The AI-5620 instrument contains a signal meter which can be configured to perform
filtering, level measurement, and frequency measurements on many signal sources
available within the device. These features are implemented by the MeterManager class
and are accessible through the Meter property of the AI560_TE_Simulator class. The AC
signal routing within the meter is illustrated below in Figure 33.

 Figure 33 AI-5620 Meter Signal Routing Diagram

The AC signal routed to the meter is selected using the Signals.MeterSource property
which is described in section 17.5.

aiDevices Framework Programming Guide 128

Advent Instruments Inc. AI-5620 TE Simulator

The MeterManger class exposes the following members which manage AC signal
measurements.

• MeasurementFilter – this configures the main filter bank and places the filter
before the meter measurements (see section 17.5).

• UnfilteredLevel – returns the current RMS level measurement of the input
signal before any filtering is applied.

• FilteredLevel – returns the current RMS level measurement after the main filter
bank.

• Frequency – returns a frequency measurement taken after the main filter bank.

• NotchFilterBank – configures the notch filters within the meter with up to two
independent notch filters.

• NotchedLevel – returns the current RMS level measurement taken after both the
main filter bank and notch filter bank.

• ACMeasurementSpeed – this property configures the settling time and low
frequency accuracy of each of the above level measurements. The allowed
values are:

o Very Fast ⇒ 25 ms settling time (± 0.1 dB accuracy f ≥ 500 Hz)

o Medium ⇒ 100 ms settling time (± 0.1 dB accuracy f ≥ 100 Hz)

o Slow ⇒ 400 ms settling time (± 0.1 dB accuracy f ≥ 30 Hz)

o Very Slow ⇒ 1.1 second settling time (± 0.1 dB accuracy f ≥ 10 Hz)

All AC signal level measurements are affected the ACMeasurementSpeed which
configures the settling time and low frequency accuracy of the level meters.

The MeterManger class also exposes the following members which manage DC-coupled
signal measurements from the telephone interface:

• LineVoltage – returns the DC line voltage measured in the telephone interface.

• LoopCurrent – returns the DC loop current measured within the telephone
interface.

• CommonModeVoltage – returns the common mode voltage measured from the
tip-ring conductors with respect to earth ground.

• DCMeasurementSpeed – this property specifies the averaging applied to the
DC-coupled measurements above. This averaging will affect the accuracy of the
measurements in the presence of low frequency AC signals. The allows values
are:

o No Filtering ⇒ No averaging is applied

o Medium ⇒ 0.5 second settling time (≥ 40 dB rejection f ≥ 100 Hz)

o Slow ⇒ 2 second settling time (≥ 40 dB rejection f ≥ 30 Hz)

o Very Slow ⇒ 5.5 second settling time (≥ 40 dB rejection f ≥ 10 Hz)

The measurement manager also contains the following general members

• GetMeasurements – this method returns a set of nearly simultaneous
measurements from the meter.

aiDevices Framework Programming Guide 129

AI-5620 TE Simulator Advent Instruments Inc.

17.8. Instrument Status
Once communications are established with an AI-5620, the instrument’s firmware and
the device class cooperate to periodically send important status information to the
device’s StatusManager object (in the background) where it is accessible to the parent
application without incurring communications delays. This status information is
accessible through the Status property of the device object.

All properties of the StatusManager object (accessed through the Status property) can be
read without incurring communication delays or any associated processing. This is
very helpful for updating status displays without interfering with other tasks.

All information reported through the Status property is automatically updated in the
background from a worker thread and is thread-safe. The application must be careful
to note:

• The reported information may be updated at any time with respect to the
execution of the application.

• The status information is updated at a fixed rate and may take as long as 400
milliseconds between refreshes (although typically it is faster)

The accessible status values are:

• LineState – the most recently reported telephone line state (see section 13.4)

• UnfilteredLevel – the most recent unfiltered level measurement from the meter
(see section 17.7)

• FilteredLevel – the most recent filtered level measurement from the meter (see
section 17.7)

• MeterFrequency – the most recent frequency measurement from the meter (see
section 17.7)

• LineVoltage – the most recent line voltage measurement from the meter (see
section 17.7)

• LoopCurrent – the most recent loop current measurement from the meter (see
section 17.7)

• IsVoltageProtectionActive – indicates if the over-voltage protection
mechanism has been engaged within the AI-5620 instrument (see section 17.14)

• IsPowerProtectionActive – indicates if the over-power protection mechanism
has been engaged within the AI-5620 instrument (see section 17.14)

• IsTransmitterClipping – returns true if the signal being generated on the
telephone interface is clipping due to very high signal level.

• IsReceiverClipping – returns true if the measurement circuitry within the
telephone interface is clipping due to very high signal levels.

aiDevices Framework Programming Guide 130

Advent Instruments Inc. AI-5620 TE Simulator

17.9. Signal Generation

17.9.1. Tone Generators
Each AI-5620 is equipped with four tone generators whose features are accessible
through the ToneA, ToneB, ToneC, and ToneD properties.

Each of these properties returns a ToneGenerator object (see section 16.1.1) which can be
used to generate simple tones or can be reserved by higher level signal generators to
produce more complicated signaling.

17.9.2. Pattern Generator
The AI5620_TE_Simualtor object supports the generation of multi-tone patterns through
the PatternGenerator class which is returned by the property with the matching name (see
section 17.9.2).

17.9.3. AM Generator
The AI-5620 is equipped with an AM signal generator which is accessed through the
AMGenerator property (see section 16.1.4).

17.9.4. Echo Generator
The AI-5620 is equipped with an echo generator for simulating telephone network
impairments which is accessible through the EchoGenerator property (see section 0).

17.9.5. FSK Generator
The AI-5620 is equipped with an FSK generator which can be accessed through the
FSKGenerator property (see section 16.1.3).

17.9.6. MF Generator
The AI-5620 is equipped with an MF generator for generating dual tone signals which
can be accessed through the MFGenerator property (see section 16.1.2).

17.9.7. Noise Generator
The AI-5620 is equipped with a white noise generator which can be accessed through the
NoiseGenerator property (see section 16.1.6).

The main filter bank can be configured to filter the output of the noise generator in order
to band-limit the resultant noise signal (see section 17.5).

aiDevices Framework Programming Guide 131

AI-5620 TE Simulator Advent Instruments Inc.

17.9.8. Pulse Dialing Generator
The AI-5620’s pulse dialing capabilities are exposed through the PulseDialingGenerator
class which can be accessed through a property of the device object bearing the same
name. This generator is very simplistic in its public interface and defines only the
following members:

• Generate – this method will cause a pulse dialing digit to be generated; either
immediately or at a specified time.

• IsActive – this returns true if a pulse dialing digit is currently being generated.

The timing of the start and end of a pulse dialing digit is reported through signal
notifications documented in section 10.

Example:

With _5620
 ' dial '3' with default digit timing
 .PulseDialingGenerator.Generate(New PulseDialingDigit("3"c))

 ' wait up to 5 seconds for this digit to be generated
 .Wait.Until(ActionType.Pulse_Dialing_Generator_Stopped, _
 TimeInterval.InSeconds(5))

End With

aiDevices Framework Programming Guide 132

Advent Instruments Inc. AI-5620 TE Simulator

17.10. Signal Detection

17.10.1. Detected Signal List
An automatically updated list of detected signals is accessible through the DetectedSignal
property of the AI5620_TE_Simuator device object (see section 16.4).

17.10.2. Line State Detector
The AI5620_TE_Simulator class detects line-state based signals using a sub-class of the
LineStateDetector class (see section 16.2.1) which can be accessed through the LineState
property. In addition to the features of the base class this derived class allows
applications to configure the voltage and current threshold settings which are used to
determine the telephone line state (see section 13.4).

The AI-5620 determines the telephone line state by comparing voltage and current
measurements to a set of threshold settings as illustrated in Figure 34.

Figure 34 AI-5620 Telephone Line State Diagram

The AI-5620 continuously measures the line voltage and loop current present in the
telephone interface circuitry and maps the measurements to one of the four possible
telephone line states. When the instantaneous line state changes and persists for a short
period of time the AI-5620 determines that the line state has changed and issues a
notification. If the measurements do not fall into any of the well defined regions in Figure
34 the line state is considered “ambiguous” and it is assumed that no line state change has
occurred. (Note: generally these “ambiguous” regions only happen in transition from one
state to another).

aiDevices Framework Programming Guide 133

AI-5620 TE Simulator Advent Instruments Inc.

The LineStateDetector class exposes the following threshold properties:

• ThresholdDisconnectVoltage (Vdisconnect) – this specifies the voltage below
which the telephone line may be considered disconnected (assuming the loop
current is also below the disconnect threshold).

• ThesholdInUseVoltage (Vin-use) – this specifies the voltage below which the
telephone line may be considered to be “In Use” (assuming the line voltage is
also above the disconnect threshold and the loop current is below the on-hook
threshold)

• ThresholdOnHookVoltage(Von-hook) – this specifies the voltage above which
the telephone line may be considered to be “On Hook” (assuming the loop
current is also below the on-hook threshold)

• ThresholdDisconnectCurrent (Idisconnect) – this specifies the loop current below
which the telephone line may be considered to be disconnected (assuming the
line voltage is also below the disconnect threshold).

• ThresholdOnHookCurrent (Ion-hook) – this specifies the loop current below
which the telephone line may be considered to be “In Use” or “Off Hook”
depending on line voltage.

• ThresholdOffHookCurrent (Ioff-hook) – this specifies the loop current above
which the telephone line may be considered to be off hook. (Assuming the
telephone interface hook switch is off-hook or a fixed termination is applied).

Reset to Defaults
The LineStateDetector object exposes a ResetToDefaults method which will reset these
threshold settings back to their default values. More specifically this method will assign
the following default values:

Threshold Default
Vdisconnect 1 V

Vin-use 19 V
Von-hook 21 V
Idisconnect 0.5 mA
Ion-hook 1 mA
Ioff-hook 10 mA

17.10.3. DTMF Detector
The DTMF detector is accessible through the DTMFDetector property of the
AI5620_TE_Simuator device object (see section 16.2.2).

17.10.4. FSK Detector
The FSK detector is accessible through the FSKDetector property of the
AI5620_TE_Simuator device object. See section 16.2.3 for detailed class documentation.

aiDevices Framework Programming Guide 134

Advent Instruments Inc. AI-5620 TE Simulator

17.10.5. Metering Pulse Detector
The AI-5620 contains a detector algorithm which can detect metering pulses (as defined
in section 14.11) with up to three distinct frequency definitions. This feature is managed
by the MeteringPulseDetector class and can be accessed through a property with the same
name. This class exposes the following members:

• FrequencyTollerance – this specifies the maximum acceptable frequency
deviation (in percent) from the template frequencies for valid metering pulses to
be detected.

• TemplateCount – this returns the maximum number of metering pulse
frequency definitions which can be simultaneously detected

• TemplateFrequency – this specifies the center frequency for a specific
metering pulse template.

• ResetToDefaults – this resets the detectable templates back to 12 kHz and 16
kHz.

Example:

With _5620.MeteringPulseDetector

 ' detect 12 kHz metering pulses
 .TemplateFrequency(0) = Frequency.InkHz(12)

 ' also detect 14 kHz metering pulses
 .TemplateFrequency(1) = Frequency.InkHz(14)

 ' disable the third template
 .TemplateFrequency(3) = Nothing

 ' allow 1% frequency deviation
 .FrequencyTollerance = 1

End With

17.11. Instrument Time
Information regarding the AI-5620 device time base (discussed in section 9) is accessible
through the Time property of the AI5620_TE_Simulator object. The returned object
exposes the following members:

• Epoch – this returns the time stamp corresponding to the device time epoch (see
section 9) which corresponds to the time when communications were first
established.

• MostRecent – this property returns the time stamp information from the most
recent status update from the instrument. This time value should be accurate to
within 0.5 seconds.

• Now – this function actually polls the instrument and returns the current
instrument time. The time stamp returned is accurate to within the
communication delay (which varies but is normally in the order of 50
milliseconds)

aiDevices Framework Programming Guide 135

AI-5620 TE Simulator Advent Instruments Inc.

17.12. Waiting
The AI5620_TE_Simulator class exposes a WaitManager object which assists
applications in waiting for particular events of interest (see section 16.3).

17.13. Digital I/O
The AI-5620 TE Simulator is equipped with three digital outputs and two digital inputs
which are available on the rear panel of the instrument. These digital inputs and outputs
can be configured using the DigitalIO property of the AI5620_TE_Simulator object. The
returned object exposes the following members:

• GetDigitalInputs – returns an array containing the states of each digital input

• InputA – returns the current logic state of digital input A. (0=false,1=true)

• InputAMode – this specifies the special purpose (if any) for digital input A.
The available settings are:

o General Purpose Input – no special purpose is assigned to the input.
The logic value present on the input can be read using the InputA
property.

o Hook Switch Control – the digital input controls the hook switch
within the AI-5620. Logic ‘1’ corresponds to off-hook, logic ‘0’
corresponds to on-hook.

• InputB – returns the current logic state of digital input B. (0=false,1=true)

• OutputA – specifies the output signal applied to digital output A. The available
settings are:

o Output Low – logic ‘0’ will be applied to the digital output

o Output High – logic ‘1’ will be applied to the digital output

o FSK Decoder Output – the demodulated bit pattern will be applied to
the digital output.

• OutputB – specifies the output signal applied to digital output B. The available
settings are:

o Output Low – logic ‘0’ will be applied to the digital output

o Output High – logic ‘1’ will be applied to the digital output

o Ring Detect – the digital output will be set high when ringing is
detected on the telephone interface.

• OutputC – specifies the output signal applied to digital output C. The available
settings are:

o Output Low – logic ‘0’ will be applied to the digital output

o Output High – logic ‘1’ will be applied to the digital output

o Hook Switch Status– the digital output will be set high (‘1’) when the
telephone interface is taken off hook.

aiDevices Framework Programming Guide 136

Advent Instruments Inc. AI-5620 TE Simulator

17.14. Instrument Protection
The firmware within the AI-5620 is designed to detect hazardous operating conditions
and automatically take action to prevent permanent damage to the instrument. Typically
these conditions include:

• Very high DC voltages applied to the telephone interface

• Very high currents flowing through the telephone interface

• Excessive power dissipation within the telephone interface circuitry

Depending on the nature of the hazardous condition, the firmware may take one of the
following actions to protect the internal circuitry:

• Disconnect the entire telephone interface circuitry from the front panel jack.
This disconnection may be temporary or until reset by the parent application.

• Disconnect the AC termination circuitry used to transmit AC signals on the
telephone line.

• Disconnect the ringing loads from the telephone line.

Whenever a protection mechanism is invoked within the AI-5620, the device object will
deliver a ProtectionNotification object through the notification system documented in
section 10

While the notification mechanism can inform a parent application that a protection
mechanism has been engaged, the Protection property of the AI5620_TE_Simulator
object exposes the following properties to determine the protection mechanisms which
may be engaged on the instrument:

• IsProtected – this returns true when any protection mechanism is active within
the AI-5620 instrument. For more specific information about the protection
mechanism see the properties below.

• IsTelIntDisconnectedStatically – this will return true if the telephone interface
circuitry has been statically disconnected. This disconnect state will remain in
place until the parent resets the protection mechanism (see Reset method)

• IsTelIntDisconnectedTemporarily – this returns true if the telephone interface
circuitry has been disconnected, but will be automatically reconnected by the
firmware after a short delay.

• AreRingingLoadsDisconnected – this returns true if the ringing loads have
been disconnected. Typically the firmware will automatically reconnect the
ringing loads after a short period of time, or when the hazardous conditions have
been removed.

• IsACTerminationRemoved – this returns true if the AC termination circuitry
has been removed from the line to prevent damage. In this condition, the
instrument will not be able to generate signals onto the telephone line. Generally
the AC termination circuitry will be reconnected to the telephone line once the
hazardous condition is removed.

Some hazardous operating conditions (extremely high voltages/ currents) will cause the
instrument to disconnect the telephone interface statically. When this occurs, the
application should ensure that the hazardous conditions are removed and then may
reset the protection mechanism through the following method:

aiDevices Framework Programming Guide 137

AI-5620 TE Simulator Advent Instruments Inc.

• Reset – this method will reset any static protection mechanism which may be
engaged and reconnect the telephone interface.

The protection mechanisms built into Advent Instruments products are designed to
prevent permanent damage caused by operating conditions which are hazardous to
the instrument’s internal circuitry. Such conditions can include:

• High voltages
• Excessive current draw
• Unbalanced current draw from a telephone interface
• Excessive power dissipation within the instrument

When a protection mechanism is engaged by an instrument: ensure the hazardous
condition is removed before resetting the protection mechanisms! Repeated long
term exposure to these hazardous conditions may still damage the instrument.

aiDevices Framework Programming Guide 138

Advent Instruments Inc. AI-7280 CO Simulator

18. AI-7280 CO Simulator

One of the instruments supported by aiDevices is the AI-7280 Central Office Simulator
which

• Simulates a central office (FXS) with programmable telephone interface
characteristics

• Detects, analyzes, generates, and records telephony signals (such as DTMF,
FSK, Caller ID, Line Flash, OSI, etc)

• Generates ringing and Caller ID signals

• Tests the functionality or compliance of Terminal Equipment (TE)

For a more detailed product information and specifications please refer to the “AI-7280
User Guide” which is available at www.adventinstruments.com.

The features of the AI-7280 instrument are accessed through the AI7280_CO_Simulator
class within the aiDevices framework. Unless otherwise noted, all documentation within
the following subsections refers specifically to the AI7280_CO_Simulator class.

aiDevices Framework Programming Guide 139

http://www.adventinstruments.com/

AI-7280 CO Simulator Advent Instruments Inc.

18.1. Establishing Communications
Communications with the AI-7280 instrument can be established using one of the three
static Connect methods as documented in section 8.4. Each of these functions will behave
as follows:

• If an instrument is found which is supported by the class and communications
are established successfully, then an instance of the device object will be created
and returned. This object can then be used to control the connected instrument.

• If no supported instruments are found then null is returned.

• If an instrument is found but communications are not established correctly or the
instrument is not supported by the device class then the function will raise an
Exception which must be handled by the calling application.

When communications are established with an AI-7280 instrument through any of the
Connect methods available:

• The device object does not modify instrument settings but rather synchronizes
with the current state of the AI-7280 which may be left in a particular state by
another application. This behavior is vital in situations when connections must be
established and terminated with the AI-7280 without disturbing the telephone line
state, signal routing, or signal generators.

• If your application requires a particular instrument configuration it must call
ResetToDefaults after communications are established or adjust each device
setting to the desired state.

• Certain features (such as recording) may not be able to be completely
synchronized when communications are established and may reset such features
to default settings.

Examples:

AI7280_CO_Simulator Dev = null;
try {
 // connect to any available AI-7280
 Dev = AI7280_CO_Simulator.Connect();
 if (Dev==null)
 {
 // No instruments available!
 } else {
 if (Dev.Exceptions.Count !=0)
 {
 // AI-7280 is connected but has
 // reported an problem
 }
 }
}catch(Exception ex)
{
 // AI-7280 may be present but could not connect!
}

aiDevices Framework Programming Guide 140

Advent Instruments Inc. AI-7280 CO Simulator

18.2. Terminating Communications
Once your application has finished using an AI7280_TE_Simulator object it must always
call one of the Close methods before setting the object variable to null! Please refer to
section 8.6 for detailed information regarding these Close methods.

When communications are terminated with an AI-7280 instrument through a Close
method:

• All automated behavior (such as pattern generation, ringing patterns, scheduling,
etc) will stop immediately.

• All static device settings (such as line impedances, feed voltages, and signal
routing) and simple signal generators (tone generators, echo, etc) will remain in
their current states. This behavior may be desirable if the instrument is configured
within a test fixture.

• If your application requires a particular instrument state after communications are
terminated then it should call ResetToDefaults (or ensure that each instrument
setting is property configured) before calling Close

18.3. Resetting to Default Settings
In many applications it is desirable to reset the instrument settings to their default settings
to return the device to a known operating condition. The AI7280_CO_Simulator class
implements a ResetToDefaultSettings method as documented in section 8.7. In general
this will:

• Stop signal generators and reset all signal generator settings to nominal defaults

• Reset all detector settings to nominal defaults

• Reset all telephone interface settings

• Reset all digital outputs to “Output Low” and disable all special functions

• Reset all signal routing, measurement settings, and filters to defaults

This ResetToDefaultSettings does not initiate a hardware reset of the associated
instrument but rather reconfigures the instruments with “safe” default values.

aiDevices Framework Programming Guide 141

AI-7280 CO Simulator Advent Instruments Inc.

18.4. Determining Instrument Capabilities
The particular capabilities of the instrument’s hardware and firmware in combination
with the supporting device classes are reported through the Capabilities property of the
AI7280_CO_Simualtor class. The AI-7280 specific capabilities are reported using the
properties documented in the following sections.

The capabilities of the tone generator, FSK generator, noise generator, echo generator,
and ring generator are reported using the standard interfaces documented in section 8.3.

18.4.1. Telephone Interface Capabilities
The capabilities of the telephone interface are reported through the following properties

• SourceVoltageMinimum
SourceVoltageMaximum – reports the range of supported range of DC feed
voltages which can be used to program the telephone interface SourceVoltage
property.

• LoopCurrentMinimum
LoopCurrentMaximum – reports the supported range of loop currents which
can be assigned to the telephone interface SourceCurrent property.

• OffHookCurrentThresholdMinimum
OffHookCurrentThresholdMaximum – reports the support range of off hook
current thresholds which can be programmed through the
LineState.ThresholdOffHookCurrent property.

18.5. Signal Routing and Processing
The AI-7280 instrument can be configured to route a selection of internal signals
throughout the instrument and the connectors on the front and rear panels of the
instrument.

The signal routing capabilities of the AI-7280 can be accessed using a SignalManager
object which is accessed through the Signals property of the AI7280_CO_Simulator
class. The following sections describe the signal routing capabilities within the
instrument and highlight the corresponding programming interface; starting with the
signal generators shown in Figure 35.

Figure 35 AI-7280 Signal Generator Routing Diagram

aiDevices Framework Programming Guide 142

Advent Instruments Inc. AI-7280 CO Simulator

The outputs of each fundamental signal generator are summed together to produce the
internal signal labeled “Signal Generators” as illustrated in Figure 35. This signal can
then be routed to many signal blocks through the instrument including the telephone
interface. A heavily simplified diagram of this telephone interface AC signal routing is
shown below in Figure 36 (For DC related discussion see section 18.6).

Figure 36 Simplified AI-7280 Telephone Interface AC Signal Routing

The output of the signal generators and the audio input from the rear panel can be
combined and transmitted on the telephone line. The amplitude of these signals can be
adjusted using the following method:

• SetTelIntGains – this method sets the gains applied to the signal generator
output and audio input before the signals are summed and transmitted onto tip
and ring.

This signal is then routed to the echo generator (see section 0) whose output is used as the
internal signal labeled “TelInt Transmit” and is transmitted onto the tip-ring conductors.

The AC voltage signal measured from the telephone interface is yet another internal
signal which is labeled “TelInt Receive” and is typically routed to the meter and signal
detectors. The AI-7280 also contains a signal hybrid (which cancels transmitted signals
from the received signals) which results in another signal labeled “TelInt Hybrid”.
Applications will tend to use this signal when attempting to isolate signals generated by
other devices on the telephone line from those generated by the AI-7280.

The SignalManager also exposes the following methods:

• AudioOutputSource – selects the internal signal which is routed to the audio
output connector on the rear panel

• AudioOutputGain – selects the gain factor which will be applied to signals
which are routed to the audio output on the rear panel.

• MeterSource – selects the AC signal routed to the meter (see section 18.7)

• AnalyzerSource – selects the AC signal which is routed to the detectors within
the instrument (see section 18.10)

• ResetToDefaults – this method will reset all the signal routing properties to
defaults (see section 18.5.1)

aiDevices Framework Programming Guide 143

AI-7280 CO Simulator Advent Instruments Inc.

18.5.1. Reset to Defaults
The SignalManager object exposes a ResetToDefaults method which will reset only the
signal routing settings back to their default values. More specifically this method will:

• Set the audio output gain to zero and set the source to “none”

• Set the audio input gain to zero and the generator gain to 1

• Clear the main filter bank (no filtering) and places the filter before the meter

• Both the meter source and the detector source are configured to receive the
“TelInt Receive” signal (see Figure 31)

18.6. Telephone Interface
The (FXS) telephone interface circuitry of the AI-7280 is accessible through a single RJ-
11 connector on the front panel of the instrument. This telephone interface will supply
DC feed voltage and loop current to one or more connected TEs. A heavily simplified
version of the telephone interface is illustrated in Figure 37.

Figure 37 Simplified AI-7280 Telephone Interface

The AI7280_CO_Simulator class allows applications to assert full control over the
features of this telephone interface circuitry through the TelInt property of the device
object. This class exposes the following members:

• SourceVoltage – this specifies the DC feed voltage which will be applied at the
telephone when on hook.

• SourceCurrent – this specifies the regulated DC current which will be sourced
when a TE is off hook (and the applicable SourceMode is selected).

• SourceMode – this setting specifies the sourcing behavior of the telephone
interface circuitry. The available settings are:

o Constant Current – when this mode is selected the loop current will
be regulated according to the SourceCurrent setting when a TE goes off
hook.

o Constant Voltage – when this setting is selected the AI-7280 will
provide a constant voltage when a TE goes off hook and the loop
current will be determined by this voltage setting and the total loop
resistance including the fixed 400 Ω output resistance of the AI-7280.

aiDevices Framework Programming Guide 144

Advent Instruments Inc. AI-7280 CO Simulator

• OffHookCurrentThreshold – this specifies the DC loop current above which
the telephone line will be considered off hook and the telephone interface will
switch to a current regulated source (if selected).

• IsOffHook – returns true if a TE is drawing sufficient loop current to put the
telephone interface in the off-hook state. This current is determined by the
OffHookCurrentThreshold property.

• LineState – returns the currently detected line state (see section 13.4).

• ACImpedance – this property specifies the AC impedance presented on the
telephone interface. This impedance may be specified using an Impedance
object specified in section 13.2 or one of the values returned by the
FixedImpedancesAvailable list.

• FixedImpedancesAvailable – returns a list of the fixed impedances installed
within the instrument. If optional impedances are installed they will appear in
this list.

• Balance – this specifies the AC impedance of the telephone network as seen by
the instrument. This is used in the instrument’s signal hybrid and affects the
trans-hybrid loss.

• Connect – this method will cause the telephone interface to be internally
connected; either immediately or at a specified time.

• Disconnect – this method will cause the telephone interface to be internally
disconnected; either immediately or at a specified time.

• IsDisconnected – this returns true if the telephone interface circuitry is currently
disconnected internally.

• Generate – this method will cause an OSI to be generated; either immediately
or at a specified time.

• MeasurementPoint – this selects the place within the telephone interface
circuitry where the voltage measurements are taken. The available settings are:

o Inside Pair – measurements are taken from the inside pair of telephone
conductors on the RJ-11 connector (this is the same pair on which the
DC feed is applied)

o Outside Pair – measurements are taken from the outside pair of
telephone conductors on the RJ-11 connector. This setting may be
helpful when it is desirable to measure voltages other than those
generated by the AI-7280 telephone interface.

• MeasurementRange – this selects the range of the AC signal measurements
within the telephone interface. The available settings are:

o Normal Range – when this setting is selected up to 5 Vrms may be
measured without distortions in the measurements

o High Range – when this setting is selected signals much larger than 5
Vrms may be measured however very low voltages will not be able to
be measured accurately.

• Polarity – returns the line polarity of the telephone interface (see section 13.5)

• Reverse – this will reverse the polarity of the telephone interface circuitry with
respect to the RJ-11 tip-ring conductors.

• ResetToDefaults – this method will reset the telephone interface to default
settings (see section 17.6.1).

aiDevices Framework Programming Guide 145

AI-7280 CO Simulator Advent Instruments Inc.

Example:
Imports Advent.aiDevices.AI7280_CO_Simulator

With _7280.TelInt

 ' Set the DC feed and off-hook current
 .SourceVoltage = DCVoltage.InVolts(48)
 .SourceCurrent = DCCurrent.InMilliAmps(26)
 .SourceMode =
AI7280_CO_Simulator.TelIntSourceMode.ConstantCurrent

 ' set TBR-21 output impedance
 .ACImpedance = Impedance.TBR_21
 .Balance = Impedance.Resistive_600

 ' connect the telephone interface to the RJ-11 connector
 .Connect()

 ' measure voltages on the inside pair
 .MeasurementPoint = TelIntMeasurementPoint.InsidePair
 .MeasurementRange = TelIntMeasurementRange.NormalRange

 ' reverse the line polarity
 .Reverse()

 ' go off hook at 10mA
 .OffHookCurrentThreshold = DCCurrent.InMilliAmps(10)

 'reverse the telephone line polarity
 .Reverse()

 ' generate an OSI
 .Generate(New OSI(TimeInterval.InMilliseconds(100)))

End With

aiDevices Framework Programming Guide 146

Advent Instruments Inc. AI-7280 CO Simulator

18.7. Meters and Measurements
The AI-7280 instrument contains a signal meter which can be configured to perform
filtering, level measurement, and frequency measurements on many signal sources
available within the device. These features are implemented by the MeterManager class
and are accessible through the Meter property of the AI7280_CO_Simulator class. The
AC signal routing within the meter is illustrated below in Figure 33.

 Figure 38 AI-7280 Meter Signal Routing Diagram

The AC signal routed to the meter is selected using the Signals.MeterSource property
which is described in section 17.5. The MeterManger class exposes the following
members which manage AC signal measurements.

• MeasurementFilter – this loads the main filter bank and places the filter before
the meter measurements (see section 13.3).

• UnfilteredLevel – returns the current RMS level measurement of the input
signal before any filtering is applied.

• FilteredLevel – returns the current RMS level measurement after the main filter
bank.

• FilteredFrequency – returns a frequency measurement taken after the main
filter bank.

• NotchFilterBank – configures the notch filters within the meter with up to two
independent notch filters (see section 13.3).

• NotchedLevel – returns the current RMS level measurement taken after both the
main filter bank and notch filter bank.

• ACMeasurementSpeed – this property configures the settling time and low
frequency accuracy of each of the above level measurements. The allowed
values are:

o Very Fast ⇒ 25 ms settling time (± 0.1 dB accuracy f ≥ 500 Hz)

o Medium ⇒ 100 ms settling time (± 0.1 dB accuracy f ≥ 100 Hz)

o Slow ⇒ 400 ms settling time (± 0.1 dB accuracy f ≥ 30 Hz)

o Very Slow ⇒ 1.1 second settling time (± 0.1 dB accuracy f ≥ 10 Hz)

aiDevices Framework Programming Guide 147

AI-7280 CO Simulator Advent Instruments Inc.

All AC signal level measurements are affected the ACMeasurementSpeed which
configures the settling time and low frequency accuracy of the level meters.

The MeterManger class also exposes the following members which manage DC-coupled
signal measurements from the telephone interface:

• LineVoltage – returns the DC line voltage measured in the telephone interface.

• LoopCurrent – returns the DC loop current measured within the telephone
interface.

• UnbalancedCurrent – returns the difference in loop current measurements
between the tip and ring conductors.

• DCMeasurementSpeed – this property specifies the averaging applied to the
DC-coupled measurements above. This averaging will affect the accuracy of the
measurements in the presence of low frequency AC signals. The allows values
are:

o No Filtering ⇒ No averaging is applied

o Medium ⇒ 0.5 second settling time (≥ 40 dB rejection f ≥ 100 Hz)

o Slow ⇒ 2 second settling time (≥ 40 dB rejection f ≥ 30 Hz)

o Very Slow ⇒ 5.5 second settling time (≥ 40 dB rejection f ≥ 10 Hz)

The measurement manager also contains the following general members

• GetMeasurements – these methods returns a set of nearly simultaneous
measurements from the meter

18.8. Instrument Status
Once communications are established with an AI-7280, the instrument’s firmware and
the device class cooperate to periodically send important status information to the
device’s StatusManager object (in the background) where it is accessible to the parent
application without incurring communications delays. This status information is
accessible through the Status property of the device object.

All properties of the StatusManager object (accessed through the Status property) can be
read without incurring communication delays or any associated processing.

All information reported through the Status property is automatically updated in the
background from a worker thread and is thread-safe. The application must be careful
to note:

• The reported information may be updated at any time with respect to the
execution of the application.

• The status information is updated at a fixed rate and may take as long as 400
milliseconds between refreshes (although typically it is faster)

aiDevices Framework Programming Guide 148

Advent Instruments Inc. AI-7280 CO Simulator

The accessible status properties are:

• LineState – the most recently reported telephone line state (see section 13.4)

• IsOffHook – returns true if the most recent update indicates the telephone line
was in the off-hook state.

• IsRinging – returns true if the most recent update indicated that the ringing
generator was active.

• MeterLevel – the most recent filtered level measurement from the meter (see
section 18.7)

• MeterFrequency – the most recent frequency measurement from the meter (see
section 18.7)

• LineVoltage – the most recent line voltage measurement from the meter (see
section 18.7)

• LoopCurrent – the most recent loop current measurement from the meter (see
section 18.7)

18.9. Signal Generation

18.9.1. Tone Generators
Each AI-7280 is equipped with four tone generators whose features are accessible
through the ToneA, ToneB, ToneC, and ToneD properties. Each of these properties
returns a ToneGenerator object which can be used to generate simple tones or can be
reserved by higher level signal generators to produce more complicated signaling (see
section 16.1.1).

18.9.2. Pattern Generator
The AI7280_CO_Simualtor object supports the generation of multi-tone patterns through
the PatternGenerator class which is returned by the property with the matching name (see
section 17.9.2).

18.9.3. AM Generator
The AI-7280 is equipped with am AM generator which can be accessed through the
AMGenerator property (see section 16.1.4).

18.9.4. Echo Generator
The AI-7280 is equipped with an echo generator for simulating telephone network
impairments which is accessible through the EchoGenerator property (see section 0).

18.9.5. FSK Generator
The AI-7280 is equipped with an FSK generator which can be accessed through the
FSKGenerator property (see section 16.1.3).

aiDevices Framework Programming Guide 149

AI-7280 CO Simulator Advent Instruments Inc.

18.9.6. MF Generator
The AI-7280 is equipped with an MF generator for generating dual tone signals which
can be accessed through the MFGenerator property (see section 16.1.2).

18.9.7. Noise Generator
The AI-7280 is equipped with a white noise generator which can be accessed through the
NoiseGenerator property (see section 16.1.6).

The main filter bank can be configured to filter the output of the noise generator in order
to band-limit the resultant noise signal (see section 17.5).

18.9.8. Ringing Generator
The AI-7280 is equipped with a ringing generator which can generate ringing signals (see
section 14.12) which are generated in the on-hook line state and used to cause TEs to
alert a customer to an incoming call. The features of the ringing generator are accessible
through the RingGenerator property of the AI-7280_CO_Simulator class. The
RingGenerator class exposes the following members.

• Generate – these methods will begin generating a ringing signal (see section
14.12) either immediately or at a specified time. Ringing may also be started
with a specific cadence (see section 14.4).

• StopGenerator – this immediately stops the ringing generator.

• Level – specifies/updates the signal level of the ringing signal

• DC – specifies the DC offset during ringing

• Freq – specifies/updates the frequency of the ringing signal

• Shape – specifies/updates the shape of the ringing signal (see section 14.3).

• Update – these methods will update the ringing generator with new level, DC,
frequency, and shape information.

• ResetToDefaults – this resets the tone generator back to default settings

• IsActive – returns true if the ringing generator is currently active

The ringing generator will stop automatically when an off hook condition is detected.

aiDevices Framework Programming Guide 150

Advent Instruments Inc. AI-7280 CO Simulator

Example:

 With _7280.RingGenerator

 ' Define ringing with 80 Vrms @ 22 Hz and 48V DC
 Dim R = New Ringing(SignalLevel.InVrms(80), _
 Frequency.InHz(22), _
 DCVoltage.InVolts(48))

 ' generate ringing with 2 seconds on, 4 seconds off
 ' continuing indefinitely
 Dim RP = New Cadence(TimeInterval.InSeconds(2), _
 TimeInterval.InSeconds(4))

 ' Generate ringing with a pattern
 .Generate(R, RP)

 Thread.Sleep(3000) ' wait a bit

 ' Change the signal level to 60 Vrms
 .Level = SignalLevel.InVrms(60)

 ' Immediately stop the ringing generator
 .StopGenerator()

End With

18.9.9. Metering Pulse Generator
Metering pulses are signals sent by telephone exchanges to telephones to inform the
customer of the expense of the phone call (see section 14.11). Usually each pulse
represents a particular incremental cost and more expensive calls will result in more
pulses sent per minute. The AI-7280 is equipped with a metering pulse generator which
can be configured to transmit metering pulses at a very well controlled rate. The metering
pulse generator is managed by the MeteringPulseGenerator and can be accessed through
the property with the same name. This class exposes the following members:

• Generate – these methods will cause the generator to immediately begin
generating metering pulse signals; either indefinitely until stopped or for a
specified number of pulses.

• StopGenerator – this immediately stops the metering pulse signal generator.

• IsActive –returns true if the metering pulse generator is currently active

• IsGeneratingIndefinitely – returns true if the generator is configured to
continue transmitting metering pulses indefinitely (until stopped)

• Signal - this property specifies the metering pulse signal which is generated
periodically (see section 14.11). This can be modified while the generator is
active.

• Interval – this specifies the time interval between consecutive metering pulses.
This property can be updated while the generator is active

• Count – returns the total number of pulses remaining to be generated. If pulses
are being generated indefinitely this returns a negative value.

• ResetToDefaults – this stops the metering pulse generator and resets all the
settings back to defaults.

aiDevices Framework Programming Guide 151

AI-7280 CO Simulator Advent Instruments Inc.

Example:

 With _7280.MeteringPulseGenerator

 ' Define a metering pulse
 Dim MP As New MeteringPulse(_
 SignalLevel.InVrms(0.3), _
 Frequency.InkHz(12), _
 TimeInterval.InMilliseconds(200))

 'Start generating 100 pulses separated by 10 seconds
 .Generate(MP, TimeInterval.InSeconds(10), 100)

 'Start generating pulses separated by 60 seconds
 ' indefinitely (until stopped)
 .Generate(MP, TimeInterval.InSeconds(60))

 ' stop the metering pulse generator
 .StopGenerator()

 End With

18.10. Signal Detection

18.10.1. Detected Signal List
An automatically updated list of detected signals is accessible through the DetectedSignal
property of the AI7280_CO_Simuator device object (see section 16.4).

18.10.2. Line State Detector
The AI7280_CO_Simulator class detects line-state based signals using a sub-class of the
LineStateDetector class (see section 16.2.1) which can be accessed through the LineState
property. In addition to the features of the base class this derived class allows
applications to configure the current threshold setting which is used to determine the
telephone line state (see section 13.4).

The LineStateDetector class exposes the following threshold properties:

• ThresholdOffHookCurrent (Ioff-hook) – this specifies the loop current above
which the telephone line may be considered to be off hook.

Reset to Defaults
The LineStateDetector object exposes a ResetToDefaults method which will reset these
threshold settings back to their default values. More specifically this method will assign
the following default values:

Threshold Default

Ioff-hook 10 mA

aiDevices Framework Programming Guide 152

Advent Instruments Inc. AI-7280 CO Simulator

18.10.3. DTMF Detector
The DTMF detector is accessible through the DTMFDetector property of the
AI7280_CO_Simuator class (see section 16.2.2).

18.10.4. FSK Detector
The FSK detector is accessible through the FSKDetector property of the
AI7280_CO_Simuator class (see section 16.2.3).

18.11. Recording

The AI-7280 is capable of recording AC and DC samples from the telephone interface or
audio input connector and downloading the resulting samples to the host computer.
Applications may access these recording features through the ACRecording and
DCRecording properties of the AI7280_CO_Simulator class. Each of these objects is an
implementation of the RecordingManager documented in section 16.7.

Developers should be aware of the following limitations particular to the AI-7280.

Multiple simultaneous downloads are not possible within the AI-7280. Recordings must
be stopped before downloads can be started.

18.12. Instrument Time
Information regarding the AI-7280 device time base (discussed in section 9) is accessible
through the Time property of the AI7280_CO_Simulator object. The returned object
exposes the following members:

• Epoch – this returns the time stamp corresponding to the device time epoch (see
section 9) which corresponds to the time when communications were first
established.

• MostRecent – this property returns the time stamp information from the most
recent status update from the instrument. This time value should be accurate to
within 0.5 seconds.

• Now – this function actually polls the instrument and returns the current
instrument time. The time stamp returned is accurate to within the
communication delay (which varies but is normally in the order of 50
milliseconds)

18.13. Waiting
The AI7280_CO_Simulator class exposes a WaitManager object which assists
applications in waiting for particular events of interest (see section 16.3).

aiDevices Framework Programming Guide 153

AI-7280 CO Simulator Advent Instruments Inc.

18.14. Digital I/O
The AI-7280 is equipped with three digital outputs and two digital inputs which are
available on the rear panel of the instrument. These digital inputs and outputs can be
configured using the DigitalIO property of the AI7280_CO_Simulator object. The
returned object exposes the following members:

• GetDigitalInputs – returns an array containing the states of each digital input

• InputA – returns the current logic state of digital input A. (0=false,1=true)

• InputB – returns the current logic state of digital input B. (0=false,1=true)

• OutputA – specifies the output signal applied to digital output A. The available
settings are:

o Output Low – logic ‘0’ will be applied to the digital output

o Output High – logic ‘1’ will be applied to the digital output

o Hook Switch Status – the digital output will be set high when the
telephone interface is in the off hook state.

• OutputB – specifies the output signal applied to digital output B. The available
settings are:

o Output Low – logic ‘0’ will be applied to the digital output

o Output High – logic ‘1’ will be applied to the digital output

o FSK Decoder Output – the demodulated bit pattern will be applied to
the digital output.

• OutputC – specifies the output signal applied to digital output C. The available
settings are:

o Output_Low – logic ‘0’ will be applied to the digital output

o Output_High – logic ‘1’ will be applied to the digital output

• ResetToDefaults – this will cause all the digital outputs to be set to the “output
low” state.

aiDevices Framework Programming Guide 154

Advent Instruments Inc. AI-7280 CO Simulator

18.15. Protection Mechanisms

The firmware within the AI-7280 is designed to detect hazardous operating conditions
and automatically take action to prevent permanent damage to the instrument. Typically
it will detect only one condition:

• High unbalanced current flow from the telephone interface.

When this occurs the instrument will disconnect the entire telephone interface circuitry
from the front panel jack for a short period of time and then reconnect. If the unbalanced
condition still exists it will disconnect the telephone line and repeat as necessary.

Whenever a protection mechanism is invoked within the AI-7280, the device object will
deliver a ProtectionNotification object documented in section 0 to any listening
applications.

While the ProtectionNotification object informs the parent application that a protection
mechanism has been engaged, the Protection property of the AI7280_TE_Simulator
object exposes the following properties to determine the protection mechanisms which
may be engaged on the instrument:

• IsProtected – this returns true when any protection mechanism is active within
the AI-7280 instrument.

• IsTelIntDisconnectedTemporarily – this returns true if the telephone interface
circuitry has been disconnected, but will be automatically reconnected by the
firmware after a short delay.

At present there are no static protection mechanisms which can be reset by the
application software. All mechanisms are automatically reset by the application.

aiDevices Framework Programming Guide 155

Terminology and Definitions Advent Instruments Inc.

19. Terminology and Definitions

Cadence The on/off timing structure which can be specified to generate
signals with particular timing.

Caller ID A general term which refers to a caller identification service
which is available in many phone networks which deliver
information about the calling party to terminal equipment when
a new incoming call is established.

CAS A short dual tone signal which used to signal TEs of incoming
Caller ID transmissions (see section 14.10).

Checksum A fixed length number appended to a data transmissions which
is calculated from the message contents and is used to detect
errors in transmission (see section 14.19).

Complex Impedance In telephony this generally refers to the impedance characteristic
produced by a series RC circuit in the form Rs + [Rp || Cp] (see
section 13.2).

CO (Central Office) See also FXS.

CPE (Customer Premises Equipment) See also FXO.

Decibel (dB) A logarithmic unit of measurement which expressed the
magnitude of a physical quantity relative to a specified or
implied reference.












=

reference

measured

Value
ValuedB log20

For example dBV measures voltage relative to 1 Volt RMS.

Descriptor A class/object which is used to specify (describe) a real entity by
collecting descriptive characteristics. For example a class might
contain “red”, “spherical”, “3 cm diameter” and might be used
as a descriptor for a ball.

Device Class A class which communicates with and controls an Advent
Instruments hardware product (see section 8).

Device Support
Class

A class which implements a particular feature of an instrument
and is accessed through a property of a device class.

Device Time A timing system measured in seconds from the instant when
communications were established with an instrument (see
section 9).

aiDevices Framework Programming Guide 156

Advent Instruments Inc. Terminology and Definitions

DTMF (Dual Tone Multiple Frequency) an in-band signaling
technique used for touch tone dialing and Caller ID delivery (see
section 14.9).

Epoch The instant in time when communications were initially
established with an instrument; corresponding to a device time
of zero (see section 9).

ETSI (European Telecommunications Standards Institute)

Flash A signaling method used by Terminal Equipment (TE) to signal
a central office by quickly hanging up and then picking up
again. Historically this signal has been used to activate features
such as call waiting or three-way calling (see section 14.15).

FSK (Frequency Shift Keying) A signal modulation technique used
to transmit binary data in which a sinusoidal carrier is shifted
between two discrete frequencies (see section 14.18).

FXO (Foreign Exchange Office) See also TE.

FXS (Foreign Exchange Station) An analog telephone signaling
interface which supplies power (DC feed, loop current),
generates ringing signals, and can send and receive voice band
signals with an FXO. See also CO,

Immutable Class A class whose member values cannot be changed once the
object is created. Immutable classes are often descriptors.

Impedance Measure of opposition to alternating or direct current within a
circuit (see section 13.2).

Instrument Advent Instruments hardware external to the computer.

Mark Out The number of “mark” bits appended to the end of an FSK
transmission after the message contents.

MDMF (Multiple Data Message Format) A format of Caller ID
message data specified by the TIA and ETSI standard bodies.

Metering Pulse A signal periodically sent by telephone exchanges to telephones
to inform the customer of the relative expense of a phone call in
progress (see section 14.11).

MF (Multi Frequency) An in-band signaling technique used within
telephony networks as a form of trunk signaling to route
telephone calls. This technique was a precursor to DTMF
signaling and also consisted of two simultaneously applied
tones.

Notification A descriptor object which is passed by device objects to notify
any listening applications of important information with
minimal latency. Such events include detected signals, internal
exceptions, and completed actions.

OSI (Open Switching Interval) is a signaling method which can be
used by a central office to signal terminal equipment to either
release the line (hang up) or that Caller ID is being delivered
(see section 14.16).

POTS (Plain Old Telephone Service) This term refers to an older
style telephone that supports only the basic services.

aiDevices Framework Programming Guide 157

Terminology and Definitions Advent Instruments Inc.

Ringing A high voltage periodic AC signal which is generated by a
Central Office (CO) and is detected by TEs which cause them to
make a sound (or other indication) which alerts the customer to
an incoming phone call (see section 14.12)

RMS (Root Mean Square)A statistical measure of the magnitude of a
varying quantity calculated as:

[]∫−
=

2

1

2

12

)(1 T

T
rms dttV

TT
V

In electrical circuits the RMS voltage and current measures are
easily related to power and are more commonly used to express
the magnitude of time varying signals.

SDMF (Single Data Message Format) A format of Caller ID message
data specified by the TIA standard body.

Signal Any phenomena which can be generated or detected by an
instrument.

SMS (Short Message Service) a communications service which
delivers short text messages between compatible telephone
handsets.

Static/Shared A variable or method which is declared “statically” and whose
scope applies to a particular class and not an instance of an
object. (C# uses the term “static”, VB.Net uses the term
“shared”)

TE (Terminal Equipment) An analog telephone signaling interface
(phone, fax, modem, etc) which can generate on and off hook
signaling, accept ringing signals, and typically can send and
receive voice band signals.

Telephone Interface The circuitry which is used to interface a device to a telephone
circuit. A telephone interface may be either an FXO or FXS.

TIA (Telecommunications Industry Association) A North
American standardization organization.

VMWI (Visual Message Waiting Indicator) A Caller ID message
typically sent to inform the customer of an unread voice mail
message

aiDevices Framework Programming Guide 158

Advent Instruments Inc. Revision History

20. Revision History

Nov 2009 Assembly = 1.0.0.0 File=1.0.0.0 (BETA)

First official beta release for customer review and acceptance testing.

Dec 18, 2009 Assembly =1.0.1.0 File=1.0.1.0 (BETA)

Second official beta release for customer review and acceptance testing.

Jan 1, 2010 Assembly =1.1.0.0 File=1.1.0.0

First official public release

Feb 19, 2010 Assembly =1.1.0.0 File=1.1.1.0

Fixes
• Resolved issue with AI-7280 Signal.OutputSource and Signal.AnalyzerSource which

affected the incorrect firmware property
• Fixed bug in AI-7280 DC downloading which could produce resource conflict exceptions

and possibly corrupted data
• Fixed AI-5620 Protection.Reset so it correctly re-connects the telephone interface when

protection mechanism was engaged
• Fixed the AI-5620 ringing load property which could sometimes select the wrong load in

the firmware

New Features
• Added the ArraySampleWriter class which supports the download of recorded samples

into arrays

March 5, 2010 Assembly =1.1.2.0 File=1.1.2.0

Fixes
• Fixed bug in AI-7280 AC and DC downloading which produced erroneous resource

conflict exceptions
New Features
• Added the IsBusy property to all signal generators which indicate if the generator is

currently generating a signal or is scheduled to generate a signal in the future.

aiDevices Framework Programming Guide 159

Revision History Advent Instruments Inc.

March 8, 2010 Assembly =1.1.3.0 File=1.1.3.0

Fixes
• Fixed bug in AI-7280 AC and DC recording manager in which very short duration single-

shot recordings were missed.

May 13, 2010 Assembly =1.1.4.0 File=1.1.4.0

Fixes
• Improved the clarity of the exception message which occurs when the firmware version is

out of date
• Removed accidentally public method from AI-7280 AC recording manager.

June 28, 2011 Assembly=1.1.5.0 File=1.1.5.0
Fixes
• Resolved issue for both AI-5620 and AI-7280 where DTMF digits would occasionally not

get reported until a subsequent digit arrived.

July 4, 2011 Assembly=1.1.6.0 File=1.1.6.0
Fixes
• Resolved pulse dialing issue for both AI-5620 and AI-7280 where pulse dialing digits were

not properly detected with fast (20pps+) pulse dialing.

July 6, 2011 Assembly=1.1.7.0 File=1.1.7.0
Fixes
• Resolved issue in AI-7280 support script which caused intermittent pulse dialing detection

at fast rates (20pps) due to missed on/off hook signals

Nov 14, 2011 Assembly = 1.1.8.0 File = 1.1.8.0
New Features
• Added support for the AI-7280 Expanded DC Feed Option which allows the output

voltage and current range to 105 V and 105 mA.

Nov 21, 2011 Assembly = 1.1.9.0 File = 1.1.9.0
Fixes
• Fixed bug in MF Generator manager (affecting AI-5620 and AI-7280) where digits were

sometimes incorrectly mapped when uploaded to the firmware causing incorrect tone
sequences to be generated.

Nov 22, 2011 Assembly = 1.1.10.0 File = 1.1.10.0
Fixes
• Fixed bug in DetectedSignalList which caused a DuplicateKeyException when certain

signals with the same time stamp are added to the list.

aiDevices Framework Programming Guide 160

Advent Instruments Inc. Revision History

Dec 20, 2011 Assembly = 1.1.11.0 File = 1.1.11.0
Fixes
• Fixed bug in MDMF Caller ID Decoding where it incorrectly reported the absence of

Name information in TIA specified formats
• Fixed bug which occasionally truncated detected FSK messages by 1 byte.
• Fixed bug in AI-7280 metering pulse generator code which caused a transient signal at the

start of the first pulse
• Corrected the AI-7280 TelInt.Linestatus so it returned the current telephone line state and

not the one reported in the last status update.
• Fixed bug in AI-5620 pulse dialing scheduler which caused some digits to be started at the

wrong time
New Features
• Incorporated new firmware scheduling features into the AI-7280 OSI, noise, and on/off

hook scheduling to improve timing accuracy

Feb 27, 2012 Assembly = 1.1.12.0 File = 1.1.12.0
Fixes
• Improved latency on pulse dialing detection for both AI-7280 and AI-5620.

March 5, 2012 Assembly = 1.1.13.0 File = 1.1.13.0
Fixes
• Fixed parsing bug in device file system management code which would fail with certain

regional settings causing an exception claiming a flash file item was invalid. This affected
both AI-5620 and AI-7280

March 9, 2012 Assembly = 1.1.14.0 File = 1.1.14.0
Fixes
• Fixed bug in device file system management code which failed on invalid setup dates in

the firmware version information with certain windows regional settings which caused
device initialization to fail.

June 7, 2012 Assembly = 1.1.15.0 File = 1.1.15.0
New Features
• Added ability to disable FSK receiver during FSK transmissions to reduce application

latencies.

June 14, 2012 Assembly = 1.1.16.0 File = 1.1.16.0
Fixes
• Improved the AI-7280 FSK data upload speed to reduce latencies in FSK data

transmissions.

aiDevices Framework Programming Guide 161

Technical Support Advent Instruments Inc.

21. Technical Support

For technical support or general questions for this or any Advent Instruments product,
please contact us in any of the following methods.

• Email:

 Technical Questions: techsupport@adventinstruments.com
 Sales Inquires: sales@adventinstruments.com

• In North America:
 Tel: (604) 944-4298
 Fax: (604) 944-7488
 Mail: Advent Instruments Inc.
 111 - 1515 Broadway St.
 Port Coquitlam, BC, V3C6M2
 Canada

• In Asia:
 Tel: (852) 8108-1338
 Fax: (852) 3909-2338
 Mail: Advent Instruments (Asia) Ltd.
 Unit 42, 18/F., Block D,
 Wah Lok Industrial Centre, Phase II,
 31 / 35 Shan Mei Street,

 Fotan, Shatin, New Territories, Hong Kong

aiDevices Framework Programming Guide 162

	Introduction
	Document Scope
	Related Documents
	Document Organization
	Documentation Conventions
	Language, Style, and Normative Terms
	Code Examples
	Warnings and Notes

	What’s New in This Version
	ArraySampleWritter class (Version 1.1.1)
	SignalGenerator.IsBusy (Version 1.1.2)
	AI-7280 Expanded DC Feed Support (Version 1.1.8)

	Project Roadmap
	Installation and Dependencies
	Microsoft .Net Framework 3.5
	USB Drivers
	Firmware Versions
	Files Included

	Versioning and Compatibility
	XML Documentation
	Programming Guidelines
	Immutable Descriptor Objects
	ToString Overloads
	Thread Safety

	Device Class Fundamentals
	Common Members
	Device Support Objects
	Determining Instrument Capabilities
	Tone Generator Capabilities
	FSK Generator Capabilities
	Noise Generator Capabilities
	Echo Generator Capabilities
	Ring Generator Capabilities

	Establishing Communications
	Discovering Communication Mediums
	Terminating Communications
	Close
	CloseAndReset

	Resetting to Default Settings

	Instrument Time Management
	Time Stamps and Timing Calculations

	Notifications
	Notification Objects
	Exception Notification
	Signal Started Notification
	Signal Detected Notification
	Action Notification
	Protection Notification

	Handling Notifications

	Exception Handling
	aiDeviceException
	Automatic Communication Suspension
	Passive Exception Reporting Mechanisms
	Exception Conditions and Behaviors
	Invalid Arguments
	Resource Conflicts
	Unsupported Features
	Communication Errors
	Unexpected Errors

	Debugging and Tracing
	Communication Trace
	Debug Forms
	Communications Trace Display

	Debug Trace Files

	Descriptor Classes
	Quantities, Units, and Measures
	Signal Levels
	Frequency
	DC Current
	DC Voltage
	Resistance
	Time Intervals and Durations
	Decibels, Gain, and Unit-less Values

	Impedances
	Filters and Signal Filtering
	Telephone Line State
	Telephone Line Polarity

	Signal Descriptor Classes
	Interfaces and Signal Categorization
	Signal Descriptors and Inheritance Patterns
	Wave Shape
	CustomWaveShape

	Cadence
	Tones
	Amplitude Modulated Tone

	Multi-Tone Signals
	Multi-Tone Sequence
	Dual-Tone Signals
	Dual Tone Multiple Frequency Signals
	DTMF
	DTMF Digit
	Detected DTMF Digit

	CAS/DTAS Signals
	CAS
	Detected CAS

	Metering Pulse Signals
	MeteringPulseSignal Class
	MeteringPulse Class
	DetectedMeteringPulse

	Ringing Signals
	Ringing Class
	RingingBurst Class
	DetectedRingingBurst Class

	Telephone Line State Changes
	LineStateChange Class
	DetectedLineStateChange Class

	Telephone Line Reversals
	LineReversal Class
	DetectedLineReversal Class

	Line Flash Signals
	LineFlash Class
	DetectedLineFlash

	Open Switching Interval (OSI) Signals
	OSI Class
	DetectedOSI Class

	Pulse Dialing Signals
	PulseDialingDigit Class
	DetectedPulseDialingDigit Class

	Frequency Shift Keying (FSK) Signals
	FSK Physical Settings
	Bit Patterns
	Byte Patterns
	FSK Data
	FSK Transmissions

	Checksum Calculations

	Caller ID (FSK) Classes
	Caller ID Transmission
	Custom Bit Encoding

	Caller ID Date and Time
	Caller ID Message Formats
	SDMF Message Format
	MDMF Message Format

	TIA Messages
	ETSI Messages

	Device Support Classes
	Signal Generators
	Tone Generator
	Defaults

	MF Generator
	FSK Generator
	AM Generator
	Pattern Generator
	Noise Generator
	Echo Generator

	Signal Detectors
	Line State Detector
	DTMF Detector
	FSK Detector

	Wait Manager
	Detected Signal List
	Time Manager
	Telephone Interfaces
	Recording and Downloading
	Downloading to .WAV Files

	AI-5620 TE Simulator
	Establishing Communications
	Terminating Communications
	Resetting to Default Settings
	Determining Instrument Capabilities
	Telephone Interface Capabilities
	Metering Pulse Detector Capabilities

	Signal Routing and Processing
	Reset to Defaults

	Telephone Interface
	Reset to Defaults

	Meter and Measurements
	Instrument Status
	Signal Generation
	Tone Generators
	Pattern Generator
	AM Generator
	Echo Generator
	FSK Generator
	MF Generator
	Noise Generator
	Pulse Dialing Generator

	Signal Detection
	Detected Signal List
	Line State Detector
	Reset to Defaults

	DTMF Detector
	FSK Detector
	Metering Pulse Detector

	Instrument Time
	Waiting
	Digital I/O
	Instrument Protection

	AI-7280 CO Simulator
	Establishing Communications
	Terminating Communications
	Resetting to Default Settings
	Determining Instrument Capabilities
	Telephone Interface Capabilities

	Signal Routing and Processing
	Reset to Defaults

	Telephone Interface
	Meters and Measurements
	Instrument Status
	Signal Generation
	Tone Generators
	Pattern Generator
	AM Generator
	Echo Generator
	FSK Generator
	MF Generator
	Noise Generator
	Ringing Generator
	Metering Pulse Generator

	Signal Detection
	Detected Signal List
	Line State Detector
	Reset to Defaults

	DTMF Detector
	FSK Detector

	Recording
	Instrument Time
	Waiting
	Digital I/O
	Protection Mechanisms

	Terminology and Definitions
	Revision History
	Technical Support

