
ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR .

User Guide
&

Reference
Manual

Release 3
July 2002

Copyright 2002 by Advent Instruments Inc.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR .

Overview

TABLE OF CONTENTS iii

SECTION 1 INSTALLATION & SETUP 1

SECTION 2 USING THE AI-80 7

SECTION 2-1 OVERVIEW 9

SECTION 2-2 OPERATION 13

SECTION 2-3 OPTIONAL MODULES 19

SECTION 3 USING THE A.I. WORKBENCH SOFTWARE 25

SECTION 3-1 CONNECTING TO THE AI-80 27

SECTION 3-2 INTRODUCTION TO PROGRAMMING 29

SECTION 3-3 WORKING WITH THE FLASH MEMORY 37

SECTION 3-4 WORKING WITH PROJECTS 41

SECTION 3-5 USING THE SOURCE FILE EDITOR 49

SECTION 3-6 EXECUTING PROGRAMS 53

SECTION 4 REFERENCE INFORMATION 55

SECTION 4-1 PROGRAMMING LANGUAGE 57

SECTION 4-2 HARDWARE ABSTRACTION LAYER 69

SECTION 4-3 SYSTEM SOFTWARE OVERVIEW 95

SECTION 4-4 AUTO-CONFIG COMMAND FILES 105

SECTION 4-5 CREATING USER LIBRARIES 107

SECTION 4-6 UPDATING THE AI-80 SOFTWARE 109

APPENDIX A A.I. WORKBENCH COMPILER ERRORS 111

APPENDIX B AI-80 BUILT-IN PROGRAMS 117

APPENDIX C AI-80 ERROR MESSAGES & CODES 123

APPENDIX D HOST SERIAL COMMUNICATIONS CHECK 127

APPENDIX E GENERAL SPECIFICATIONS 129

APPENDIX F TECHNICAL SUPPORT 133

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR iii

Table of Contents

OVERVIEW I

TABLE OF CONTENTS III

SECTION 1 INSTALLATION & SETUP 1
Introduction 1

Package Items 2

Safety Precautions 2

Functional Check of the AI-80 3

Installing the Software 4
Verifying the System Requirements 4
A.I. WorkBench Software Installation 4
Cid Lite Software Installation 4

Connecting the AI-80 to the Host PC 5

SECTION 2 USING THE AI-80 7

SECTION 2-1 OVERVIEW 9
Front Panel Connections 9

Rear Panel Connections 11

SECTION 2-2 OPERATION 13
Front Panel Controls 13

Standard Programs 15

External Start Trigger 17

SECTION 2-3 OPTIONAL MODULES 19
Complex Line Impedance 19

Analog & Digital I/O 19
Analog Input & Output 20
Digital Input & Output 20
DC Voltage Measurement 21
Data Storage 21

Bell 202, V.23 FSK Decoder 22
Enabling The FSK Decoder 22
Using the FSK Decoder 23

SECTION 3 USING THE A.I. WORKBENCH SOFTWARE 25

SECTION 3-1 CONNECTING TO THE AI-80 27

SECTION 3-2 INTRODUCTION TO PROGRAMMING 29
Creating a New Project 29

Writing the Program 30

Compiling the Program 33

ADVENT INSTRUMENTS INC.

IV AI-80 CALLER ID SIGNAL GENERATOR

Loading and Running Programs 34

Saving the Program In Flash Memory 35

SECTION 3-3 WORKING WITH THE FLASH MEMORY 37
Listing Files 37

File Operations 38

File Properties 39

Saving All Program Files 40

SECTION 3-4 WORKING WITH PROJECTS 41
New & Existing Projects 41

Project Settings 42

Project Libraries 45

Saving Projects 47

SECTION 3-5 USING THE SOURCE FILE EDITOR 49
Working with Source Files 49

Instant Help 50

Editing Files 51

SECTION 3-6 EXECUTING PROGRAMS 53

SECTION 4 REFERENCE INFORMATION 55

SECTION 4-1 PROGRAMMING LANGUAGE 57
Introduction 57

Language Syntax 57
Process Block 57
Function and Subroutine Blocks 58
Variables and Constants 59
Program Statements 60
Built-in Subroutines and Functions 64

Identifiers, Data Types, Variables, and other stuff 65

Program Limits and Language Restrictions 67

SECTION 4-2 HARDWARE ABSTRACTION LAYER 69
RING Object 70
TONEA Object 70
TONEB Object 72
NOISE Object 72
DATA Object 73
MFGEN Object 74
TELINT Object 76
CPE Object 77
MEASURE Object 77
DTMF Object 78
FSK Object 79
TIMER Object 80
DISPLAY Object 81
KEY Object 82
SPEAKER Object 82
COMM Object 83
FILE Object 84
SYSTEM Object 85

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR v

IO Object 85

SECTION 4-3 SYSTEM SOFTWARE OVERVIEW 95
System Files 95

System Initialization 96

Customization 98
Changing the Default Hardware Settings 98
Changing the Default Startup Program Number 98
Changing the User Interface and Operation 99

Restoring System Files 99
Full System Restore Action 101
Update Unit Parameter Data Only Action 101
Update System Program Files Only Action 101
Update Standard Program Files Only Action 102
Update System Application Only Action 102

Boot System From a File 102

SECTION 4-4 AUTO-CONFIG COMMAND FILES 105

SECTION 4-5 CREATING USER LIBRARIES 107

SECTION 4-6 UPDATING THE AI-80 SOFTWARE 109

APPENDIX A A.I. WORKBENCH COMPILER ERRORS 111

APPENDIX B AI-80 BUILT-IN PROGRAMS 117

APPENDIX C AI-80 ERROR MESSAGES & CODES 123
System Power-Up Error Codes 123

Functional Check Error Codes 124

Program Execution Error Codes 125

APPENDIX D HOST SERIAL COMMUNICATIONS CHECK 127

APPENDIX E GENERAL SPECIFICATIONS 129
AI-80 Telephone Line Interface 129

AI-80 CPE Load Interface 129

AI-80 Optional Complex & External Impedance 130

AI-80 Optional I/O Module 130

APPENDIX F TECHNICAL SUPPORT 133

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 1

Section 1 Installation & Setup

Introduction
The AI-80 is a high performance Caller ID Signal Generator designed primarily for
production environments. Built around a flexible signal processing engine, the AI-
80 supports all Caller ID signaling protocols and data transmission formats. This
includes both the Bell 202 and V.23 FSK data transmission standards, as well as
the various DTMF based standards. The AI-80 can generate the Caller ID
signals specified by the various standards in use today, such as:

• Bellcore (Telecordia)
• TIA (Telecommunications Industry Association)
• ETSI (European Telecommunications Standards Institute)
• BT (British Telecom)
• CCA (Cable Communication Association)

In addition to providing Caller ID testing capabilities, the AI-80 can be
programmed to perform other standard telephone tests, such as:

• Pulse dialing
• DTMF dialing
• Flash timing
• Network tone detection

 Designed to be rugged and compact for use in manufacturing environments, the
AI-80 can operate by itself for simple testing applications without any other
equipment. An optional I/O module can expand the AI-80’s capabilities by
providing DC measurement capabilities, audio I/O ports, and digital I/O ports for
creating small self contained ATE (Automated Testing Environment) systems.
For more sophisticated testing applications, the AI-80 can be interfaced to a host
computer via a common RS-232 serial port.

 The AI-80 comes standard with a large selection of programs for generating
Caller ID signals in accordance to various standards. In situations requiring
specialized and custom test sequences, the standard programs can be modified
to suit the user’s need, or new applications can be developed. The A.I.
WorkBench software, included with the AI-80, provides a development
environment in which existing AI-80 programs, or new programs may be modified
or created. Programming the AI-80 is accomplished via a high level language for
ease of use. Once compiled, programs can be downloaded and stored into the
non-volatile flash memory of the AI-80. The flexible nature of the AI-80 software
system allows for easy field upgrades along with a wide range of capabilities. As
program enhancements become available, the AI-80 can be updated by simply
connecting a PC and executing the accompanying software.

ADVENT INSTRUMENTS INC.

2 AI-80 CALLER ID SIGNAL GENERATOR

 Package Items
 Use care when unpacking the AI-80 to avoid damage to the packing materials
and the instrument. The packing materials should be retained in case the
instrument is to be transported in the future.

 The package should contain the following items:

• AI-80 Caller ID Signal Generator
• A.I.WorkBench Software (CD-ROM)
• Cid Lite Software (CD-ROM)
• User Guide & Reference Manual
• 9 Pin Serial Cable (for connection to host PC)
• Telephone Cord with RJ-11 connectors
• AC Power Cord (dependent on destination country)

 Safety Precautions
 Please observe the following precautions to avoid injury and prevent damage to
this product, or any products connected to it.

• Insure the AC power source is compatible with the voltage and frequency

requirements stated on the rear label of the instrument.

• Do not operate the instrument ungrounded or with the ground pin of the

power cord removed.

• Do not operate the instrument with the case opened.

• Do not allow any liquid to enter the interior of the instruments.

• Observe all terminal ratings to avoid fire or shock hazards. Refer to the

product manual for making connections to the instrument.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 3

 Functional Check of the AI-80
 To perform a quick check that the instrument is performing properly, follow these
steps:

 1) Ensure the unit is turned off via the power switch on the rear

panel.

 2) Connect the unit to the AC power source that meets the voltage

and frequency limits specified on the rear label of the unit.

 3) Connect the supplied RJ-11 telephone cord to the Tel. Line jack

and CPE Load jack for Port A/B as shown below.

 4) Turn on the unit while continuously holding the Pause key down.

Keep holding the Pause key until the second beep is heard. This will
occur approximately 3 seconds after the power is turned on.

 5) Release the Pause key. This will start a short functional test of

the instrument.

 6) The test will take up to 10 seconds after which the display will

either show “PASS” or “F xx”, where xx is a fault code. If a fault code is
displayed the unit is operating outside its specified limits and should be
returned for repair or calibration. Please contact technical support for
repair or calibration procedures.

 7) Press the Stop key to reset the unit.

ADVENT INSTRUMENTS INC.

4 AI-80 CALLER ID SIGNAL GENERATOR

 Installing the Software

 Verifying the System Requirements
 The A.I. WorkBench software requires the following minimum system setup for
the target computer.

• Intel 486DX PC computer (or equivalent and compatible processor)

 (Pentium class or equivalent strongly recommended)
• VGA type monitor
• Microsoft Windows 95, 98, ME, NT4, or 2000 operating system
• Sixteen Megabytes of RAM
• One standard serial port (9 pin or 25 pin)

 A.I. WorkBench Software Installation
 To install the software package, turn on the computer and launch either the
Windows 95, 98, ME, NT4, 2000 operating system. Insert the supplied CD-ROM
into the computer. The setup program should automatically run after a few
seconds. If not, click the mouse on the START button on the Task bar, followed
by the RUN selection. Then type “X:\setup”, where X is the driver letter of the
CD-ROM, and press ENTER.

 The setup program can be used to install the software for any of our products. By
following the instructions provided, the setup program can automatically scan the
computer for a connected AI-80. If the AI-80 is not connected or turned on, the
check box beside the “AI-80” in the list of products must be manually checked in
order to install the software.

 Following the confirmation of the software installation, the setup program will
install each of the selected applications. The setup program will extract all the
necessary files and install them into the directory you select. The default
directory is set to “C:\Program Files\Advent\AiWb”; however, alternate directories
may be chosen by following the instructions in the setup program.

 The setup program will automatically create a program short-cut for the A.I.
WorkBench software inside the “Advent Instruments” folder.

 If any errors messages are displayed during the installation procedure, please
contact Technical Support (see Appendix F) for assistance.

 Cid Lite Software Installation
 Though not required to use the AI-80, the Cid Lite software works in conjunction
with the AI-80 Caller ID Signal Generator to provide a simple means for
generating the caller ID signals specified by various standards and specifications
in use today. This includes both the Bell 202 and V.23 FSK data transmission
standards, as well as the DTMF based standards. Operating under Microsoft’s
Windows 95 or 98 (NT & Windows 2000 version also available), the CidLite

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 5

program uses a serial RS-232 communications port to control an AI-80 Caller ID
Signal Generator.

 Normally the Cid Lite software is installed automatically following the installation
of the A.I.WorkBench software. The default directory is set to “C:\Program
Files\CidLite”; however, alternate directories may be chosen by following the
instructions in the setup program.

 The setup program will automatically create a program short-cut for the Cid Lite
software inside the “Advent Instruments” folder.

 Connecting the AI-80 to the Host PC
 Even though the AI-80 will operate without any connection to a PC, in order to
create or customize programs, a serial connection is required.

 The AI-80 Host Serial port on the rear panel is configured as a standard 9 pin
female DCE (Data Communications Equipment) interface. The connection from
the PC can be either a 9 pin or 25 pin male DTE (Data Terminal Equipment)
interface. If a 9 pin port is available on the PC, connect the supplied 9 pin cable
between the AI-80 and the host PC. If only a 25 pin port is available, attach a 25
pin to 9 pin adapter (not supplied) to the PC, before connecting the supplied 9 pin
cable between the AI-80 and PC.

 The serial port used on the PC must be recognized and configured by the
Windows operating system as either COM 1, COM 2, COM 3, or COM 4.

 Note: Since the AI-80 is configured as a DCE (Data Communications

Equipment), a “straight-through” serial cable is required. Do not use a
“null-modem” or “cross-over” cable when connecting the PC to the AI-80.

 Once the cable has been connected, ensure the AI-80 is turned on. Start the
A.I.WorkBench software by clicking the START button on the Windows Task bar.
Then select Programs, Advent Instruments, A.I.WorkBench. The program will
automatically search the available communication ports and configure them for
communication with the AI-80. If successful, the program will display the
following status line:

 If a connection could not be established, the status line will show the following:

 For more detailed information on the serial communication between the PC and
AI-80, along with trouble shooting tips, see Appendix D.

ADVENT INSTRUMENTS INC.

6 AI-80 CALLER ID SIGNAL GENERATOR

 Once a connection is established to the AI-80, new programs can be developed
and downloaded into its flash memory, or existing programs can be uploaded and
saved to disk. Various details regarding the instrument can be viewed by
selecting the [HELP] [DEVICE INFORMATION] menu command, as shown in the
following figure.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 7

 Section 2 Using the AI-80

 This section presents an overview of the AI-80 and some information on how to
operate the unit. For information on developing custom programs for the AI-80
using the included A.I. WorkBench software, see section 3.

 Section Contents:

• Overview

 Front Panel Connections
 Rear Panel Connections

• Operation
 Front Panel Controls
 Standard Programs
 External Start Trigger

• Options to the AI-80
 Analog & Digital I/O
 Complex Line Impedance
 Bell 202, V.23 FSK Decoder

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 9

 Section 2-1 Overview

 The AI-80 Caller ID Signal Generator is primarily designed for use in testing
telephone devices in a production environment. It presents a simple user
interface for ease of operation, along with a sophisticated degree of
programmability to accommodate a wide range of test requirements.

 Standard factory installed testing programs are built in the AI-80 for immediate
use, while the A.I. WorkBench software can be used to customize the existing
programs, or create new programs.

 Front Panel Connections
 The AI-80 has four standard RJ-11 telephone jacks located at the lower right
corner of the front panel. The jacks are divided into two groups referred to as
Port A/B and Port B. Only one of the two ports is active at any one time. For
production situations, testing can occur on the active port, while the next unit to
test is being connected to the inactive port. This assists in increasing through-put
by eliminating the waiting time associated with attaching a new unit to the AI-80.

 The two RJ-11 jacks associated with each ports are labeled “Tel. Line” and “CPE
Load”. The Tel. Line jack is the output of the central office (CO) simulation
circuitry. The CO simulator circuitry generates a DC voltage of 48 Volts across
the tip and ring leads of the active Tel. Line jack. Along with the DC feeding
voltage, the CO simulator can generate audio signals in the band of 20 Hz to
10,000 Hz, ringing signals up to 80 Vrms, reverse the line polarity, and an OSI
(open switching interval).

 The second RJ-11, labeled “CPE Load”, is connected to circuitry that simulates a
CPE (Customer Premise Equipment) device. The CPE load can be programmed
to be in either the on-hook or off-hook state, along with being able to measure
audio and ringing signals. When testing Caller ID adjunct devices, or stutter dial

ADVENT INSTRUMENTS INC.

10 AI-80 CALLER ID SIGNAL GENERATOR

tone detection circuitry, the CPE load finds its use as a programmable telephone
that can go on or off-hook during the testing procedure.

 The most common connection configurations between the AI-80 and any device
under test fall in one of three different variations. As shown below, the first is the
simplest connection.

 Setup 1, connects the Tel. Line jack to a telephone via a single cable. In this
configuration, the AI-80 can perform various Caller ID tests and other telephone
signaling tests, such as pulse & DTMF dialing, flash timing.

 More sophisticated telephone devices may require stutter dial tone testing, or MEI
(multiple extension in-use) testing. In this case, setup 2 connects the CPE Load
jack in parallel to the telephone under test. For this type of testing, the CPE load
is programmed to act as an extension phone that can go either on-hook or off-
hook. Depending on the state of the CPE load, the telephone under test is then
checked for proper response when receiving various signals.

 The third common connection is setup 3. This is generally used in testing Caller
ID adjunct devices, where a CPE is required to be connected to the telephone
jack of the adjunct. Similar to setup 2, the adjunct is tested for proper response
to various signals with the CPE load in either the on-hook or off-hook state.

 The connection setups described above operate in the same manner for either
port A or port B. Only one port can be active at any one time, and is indicated by
the status of the LED beside the port label.

 For added flexibility, multi-line telephones that utilize the outer pair of contacts on
the RJ-11 jack as a second line, can also be tested with the AI-80. The two left
most RJ-11 jacks that are Port A/B utilize the inner pair of contacts when port A is
active and the outer pair of contacts when port B is active. Thus the Port A/B
jacks are always active on either the inner conductors or outer conductors
depending on which port is active. The following figure shows the logical
connections between the RJ-11 jacks, the telephone interface, and CPE load
ports.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 11

 As shown above, the Port B jacks only have connections to the inner conductors
and is active only when port B is active. However, the Port A/B jacks have
connections to both ports for testing multi-line telephones that utilize the outer
pair of conductors.

 The four status LED’s associated with each port are used to indicate which port is
active, status of the ringing generator, if the CO simulator circuitry detects an off-
hook condition, and the status of the CPE load hook switch. Though the Port A/B
RJ-11 jacks are active with either port setting (on different wire pairs), the status
LED’s reflect the activity of port A only. Likewise, for the Port B RJ-11 jacks, the
status LED’s reflect the activity of port B only.

 Rear Panel Connections
 The AI-80 rear panel, as shown in the following figure, contains a standard AC
power receptacle, power switch, host serial communications port, and various
connectors associated with the optional modules.

 For proper operation, the AC power source must have a voltage in the range of
90 Vrms to 264 Vrms and a frequency in the range of 47 Hz to 63 Hz. Operation
outside this range may be unreliable and can damage the unit. As there are no

ADVENT INSTRUMENTS INC.

12 AI-80 CALLER ID SIGNAL GENERATOR

user serviceable components inside the AI-80, please refer servicing to qualified
personnel. It is important that the AI-80 be properly grounded for safety and
measurement repeatability reasons.

 The 9 pin female connector, on the right side of the rear panel, is the host serial
port. The port is configured as DCE (Data Communications Equipment) with
standard RS-232 voltage levels. When connecting to a PC, no “null modem” or
“cross over” cables are needed. It is possible to connect the host serial port to
other serial devices, such as a printer. In this case, a “cross over” or “null
modem” cable is required for proper operation. The pin connections for the host
serial port are:

 Pin 1 No Connection
 Pin 2 Receive Data (output from AI-80)
 Pin 3 Transmit Data (input to AI-80)
 Pin 4 Data Terminal Ready
 Pin 5 Ground
 Pin 6 Data Set Ready
 Pin 7 Request to Send (input to AI-80)
 Pin 8 Clear to Send (output from AI-80)
 Pin 9 No Connection

 The AI-80 does not require any specific RTS (request to send) / CTS (clear to
send) signaling in order to communicate with another serial device. The only
required connections are Receive Data, Transmit Data, and Ground. The DTR
(data terminal ready) and DSR (data set ready) pins are internally connected
together and are not used by the AI-80. For more information on the host serial
communications port, and trouble shooting tips, see Appendix D.

 The optional I/O Module adds to the rear panel, two BNC connectors for audio
input and output, a 26 pin IDC header for digital input and output, and two banana
jacks for measuring DC voltages.

 For more information on the optional modules, see section 2-3.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 13

 Section 2-2 Operation

 Front Panel Controls
 Once the AI-80 is turned on, it begins to load and execute various software
components. During this process, the display area will flash the software revision
for about half a second. In the situation where the unit is damaged, or some of
the memory files are corrupted, the display will show “Err” followed by a number.
Appendix C contains information on the meaning of the error codes along with
possible remedies and solutions.

 Once the AI-80 passes all of the internal checks, it is ready for use. The AI-80
can be operated by either the control of a PC via the host serial port, or by the five
keys located on the front panel.

 The unit contains within its non-volatile flash memory a series of program files,
which perform specific testing functions. Various programs are built into the AI-
80, and by using the A.I. WorkBench software, custom programs can be created
and downloaded into the AI-80. Each program contained within the unit is
assigned a unique number. Under normal operations, after power up the display
shows the active program number. See Appendix B for details on each of the
factory installed programs contained in the AI-80.

 The program numbers are broken into two groups. Those between 10 and 99
represent the built in programs supplied with the AI-80. Program numbers above
99 are reserved for custom programs created with the A.I. WorkBench software.
Pressing the program selection plus or minus keys will increment or decrement
the program number. Program numbers do not need to be sequential, and
unused numbers will be skipped by the program selection keys.

 Once a program has been selected with the plus/minus keys, the Start, Pause,
and Stop keys can be used to control its execution. Pressing the Start key will
begin execution of the program, while Pause suspends any running programs,
and Stop will terminate any running programs. The LED’s above the three keys
indicate the status of selected program, as either running, paused, or stopped.
When pressing the Stop key, the stop LED is only active momentarily.

 The default program at power up is number 10. This program sends an FSK
based Caller ID message, consisting of date & time, calling number, and calling
name, after two seconds of ringing. Pressing the Start key illuminates the start
LED and begins executing the program, as shown below.

ADVENT INSTRUMENTS INC.

14 AI-80 CALLER ID SIGNAL GENERATOR

 During the first two seconds of the program, the ringing generator will be active.
At this time, the display indicates the ringing level, which is set to 80 Vrms. A
short time following the ringing, an FSK modulated carrier is started, that
transmits Caller ID information in a Multiple Message format. During the data
transmission, the display shows “data”, as seen below.

 At any time the program is executing, the Pause key can be pressed to suspend
the program. To restart the program, from the pause mode, the Start key must
be pressed. Pressing the Stop key at any time will terminate the program
execution and reset all the AI-80 settings to their default values. The program
selection plus/minus keys are disabled while a program is running or in pause
mode.

 Once the FSK data has been sent, the program is finished. The start LED is
turned off, all the AI-80 settings are returned to their default state, and the
program number is again displayed.

 Many of the standard Caller ID programs are designed to automatically stop once
the information has been sent. However, other included programs, such as
measuring flash times, run indefinitely. These programs will not end themselves,
and can be stopped at any time by pressing the Stop key. This will reset the AI-
80 settings to their default values and return the display to the active program
number.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 15

 Standard Programs
 The AI-80 includes a number of built-in programs that send various Caller ID
signals or perform common telephone related tests. The following table provides
a listing of these programs with a brief description of each one. For more
information on the usage and details of each program, see Appendix B.

 To run any of the following programs, use the program selection plus/minus keys
until the program number displayed matches the desired program. Then press
the Start key to begin the program.

 No. 10 Title: Bellcore Type I - Multiple Message

 Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time,
calling number, and calling name in the Bellcore Multiple Message Format.

 No. 11 Title: Bellcore Type I - Single Message

 Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time
and the calling number in the Bellcore Single Message Format.

 No. 12 Title: Bellcore VMWI - Activate

 Send a FSK Caller ID message containing the Visual Message Waiting Indicator Activate
command, in the Bellcore Multiple VMWI format.

 No. 13 Title: Bellcore VMWI - Deactivate

 Send a FSK Caller ID message containing the Visual Message Waiting Indicator
Deactivate command, in the Bellcore Multiple VMWI format.

 No. 15 Title: Bellcore Type II - Multiple Message

 Generate a SAS tone, then CAS tone. Wait for up to 165 msec for an ACK tone. If the
ACK tone is received, send a FSK Caller ID message containing the date/time, calling
number, and calling name in the Bellcore Multiple Message Format.

 No. 20 Title: UK BT Type I CLIP Message

 Reverse telephone line polarity, then send DTAS tone for 100 msec. 150 msec after
DTAS tone, send a FSK (V.23) Caller ID Call Setup message containing the date/time,
calling number, and calling name. After FSK data generate two ringing bursts.

 No. 21 Title: UK CCA Type I CLIP Message

 Generate a ringing burst for 350 msec, then send a FSK (V.23) Caller ID Call Setup
message containing the date/time, calling number, and calling name. After the FSK data
generate two ringing bursts.

 No. 22 Title: France Type I CLIP Message

 Generate a ringing burst for 250 msec, then send a FSK (V.23) Caller ID Call Setup
message containing the date/time, calling number, and calling name. After the FSK data
generate two ringing bursts.

 No. 23 Title: Australia Type I (Ring Burst Alert)

 Generate a ringing burst for 400 msec, then send a FSK (Bell 202) Caller ID message
containing the date/time, calling number, and calling name in the Bellcore Multiple
Message format. After the FSK data generate two ringing bursts.

 No. 24 Title: Australia Type I (Line Reverse Alert)

 Reverse the telephone line polarity, then send a FSK (Bell 202) Caller ID message
containing the date/time, calling number, and calling name in the Bellcore Multiple

ADVENT INSTRUMENTS INC.

16 AI-80 CALLER ID SIGNAL GENERATOR

Message format. After the FSK data generate two ringing bursts.

 No. 25 Title: China Type I (Odd Parity)

 Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time,
calling number, and calling name in the Bellcore Multiple Message Format, except that all
ASCII characters are encode in 7 bits with odd parity.

 No. 30 Title: Japan NTT Type I

 Reverse the telephone line polarity, then generate the CAR ringing for up to 6 seconds. If
the CPE goes off-hook, send FSK Caller ID message containing the calling number in
NTT message format. Wait till CPE goes on-hook, then generate one ringing cycle.

 No. 40 Title: DTMF Caller ID (Line Reverse Alert)

 Reverse the telephone line polarity, then send a DTMF Caller ID message containing the
calling number with a start code of D, and stop code of C. Then generate two ringing
bursts.

 No. 41 Title: DTMF Caller ID (Ring Burst Alert)

 Generate a ringing burst for 500 msec, then send a DTMF Caller ID message containing
the calling number with a start code of D, and stop code of C. Then generate two ringing
bursts.

 No. 50 Title: Dial Tone Generation

 Wait till CPE goes off-hook, then generate 350 Hz / 440 Hz dial tone. Stop dial tone once
CPE goes on-hook. Repeat until program stopped.

 No. 51 Title: Stutter Dial Tone Generation

 Wait till the CPE goes off-hook, then generate 350 Hz / 440 Hz stutter dial tone (100 msec
on, 100 msec off, 10 cycles). Stop dial tone once CPE goes on-hook. Repeat until the
program is stopped.

 No. 60 Title: Measure Flash Timing

 Wait till the CPE goes on-hook, then display “F”. When CPE goes off-hook, display the
on-hook time in msec. Repeat until the program is stopped.

 No. 61 Title: Measure Pulse Dialing PPS

 During pulse dialing, display the digit count. Once finished, display the pulses-per-second.
Then wait for the next digit. Repeat until the program is stopped.

 No. 62 Title: Measure Make and Break Times

 During pulse dialing, display the digit count. Once finished, display the break time in
msec. followed by the make time in msec. Then wait for the next digit. Repeat until the
program is stopped.

 The following programs are meant to demonstrate the capabilities of the optional
I/O module. If the I/O module is not installed, executing the programs will show
“nA” on the front panel display.

 No. 80 Title: IO Module: Measure Analog Input Channels

 Measures and displays the voltage present on the four analog input channels. The input
voltages can range from -10 to +10 volts. Use the + and - keys to cycle through the
different input channels.

 No. 81 Title: IO Module: Measure DC Voltages

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 17

 Displays the voltage reading present at the rear panel banana jacks. Use the + and - keys
to change the measurement integration time between 100 msec and 1.0 seconds. Longer
integration times results in more stable readings if the signal has large common mode
power line hum components.

 No. 82 Title: IO Module: Measure Signal Frequency

 Measures the signal frequency present at digital I/O pin 6 and displays the results in units
of kHz. Using a gating time of 200 msec, the frequency resolution is 5 Hz. The applied
signal must conform to standard TTL 5 volt signal level limits.

 No. 83 Title: IO Module: Measure Pulse Timing

 Measures the signal timing present at digital I/O pin 7 and displays the results in units of
msec. By using the + and - keys the program can measure the time between rising
edges, falling edges, positive pulse duration, and negative pulse duration. The applied
signal must conform to standard TTL 5 volt signal level limits.

 No. 84 Title: IO Module: Generate Pulses

 Generates positive going pulses with a programmable duration between 1 msec and 1000
msec. The signal is present at the Timer Output pin on the I/O module 26 pin header.
The pulse duration can be changed with the + and - keys. The speaker will beep while the
pulse is active.

 No. 85 Title: IO Module: Generate Square Waves

 Generates square waves with a programmable frequency between 1 Hz and 10 kHz. The
signal is present at the Timer Output pin. The frequency is adjusted be pressing the + and
- keys.

 No. 86 Title: IO Module: Generate PWM Output

 Generates a pulse width modulated signal at the Timer Output pin. Using the + and -
keys, the PWM output can be set from 0 to 1023, representing the minimum and
maximum duty cycles. This signal can be used as a 10 bit analog voltage output by
passing it through a low pass filter.

 No. 87 Title: IO Module: UART Echo

 This program accepts an asynchronous serial data steam at digital I/O pin 1 and after
receiving a carriage return ASCII character (or 64 bytes), it will echo the received
characters out on digital I/O pin 2. The baud rate and parity is programmable via the +
and - keys.

 External Start Trigger
 Programs can be started by using an external trigger in addition to pressing the
Start key. In situations where the AI-80 serial host port is unused, creating a
connection between pins 7 (RTS) and 8 (CTS) of the 9 pin serial host port will
simulate pressing the Start key.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 19

 Section 2-3 Optional Modules

 The AI-80 can include a number of factory installed options. These options
provide additional capabilities that may be required for some applications.

 Complex Line Impedance
 In addition to the standard 600 ohm and 900 ohm line impedances built into the
AI-80, this option adds a complex line impedance. Specified at the time of order,
the complex impedance can be one of the following values:

• Complex #1: 220 ohm + (820 ohm || 115 nF)
• Complex #2: 270 ohm + (750 ohm || 150 nF)
• Complex #3: 370 ohm + (620 ohm || 310 nF)

 Analog & Digital I/O
 The Analog & Digital I/O module provides a number of expanded capabilities to
the AI-80. Applications include utilizing the AI-80 in small scale ATE systems,
where by the AI-80 can interface and control other circuitry in order to create a
basic automated testing environment. Closed loop CPE testing may also be
possible via the digital I/O, provided an interface to the CPE is available.

 The optional module provides the following functionality:

• Audio Input Port 1

• Audio Output Port 2

• DC Voltage Measurement 4

• Digital Output Port (8 bits) 3

• Digital Input Port (8 bits) 3

• Digital I/O Port (7 bits) 3

• Analog Voltage Input Channels (4) 3

• Analog Comparator Input Channels 3

• Pulse Generation and Timing 3

• Dual PWM Output 3

• Asynchronous Serial Communications Port 3

• Non-Volatile Memory for Program Data

 All of the optional ports are located on the rear of the AI-80, as shown in the
figure below. Two BNC connectors, labeled 1 and 2, provide the audio input and
output ports respectively. The 26 pin boxed header, provides all of the digital I/O
and analog input channel signals. Finally, the two banana jacks labeled 4 are
used to measure DC voltages.

ADVENT INSTRUMENTS INC.

20 AI-80 CALLER ID SIGNAL GENERATOR

 Analog Input & Output
 Signals applied to the BNC audio input can be measured by the AI-80, or mixed
with the internal tone generators and routed to the telephone interface port. This
gives the ability to apply custom signals to a CPE under test. The BNC audio
output port can be used to monitor the signals present at either the telephone
interface, CPE load interface, or internal tone generators. The function of the
audio I/O is programmable via the A.I.WorkBench software. See section 4-2 for
more information on programming the audio I/O.

 Digital Input & Output
 The 26 pin boxed header provides all the digital I/O signals, as well as the analog
input channels. Unless otherwise stated, all the I/O signals must conform to
standard 5 volt TTL logic levels. Pin 1 of the connected is located in the upper
right corner, while pin 26 is in the lower left corner. The figure below shows
function of pin on the connector. The function of the digital I/O is programmable
via the A.I.WorkBench software. See section 4-2 for more information on
programming the digital I/O.

13579

246810

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Gnd

Gnd

Di8
Ain4

Di7
Ain3

Di6
Ain2

Di5
Ain1

Di4

Di3

Di2
Ac-

Di1
Ac+

Tout
PW1

Dio7
Pti

Dio6
Pci

Dio5

Dio4
PW2

Dio3

Dio2
TxD

Dio1
RxD

Do8

Do7

Do6

Do5

Do4

Do3

Do2

Do1

 The following table describes the functions of each of the I/O pins:

 Pin(s) Function

 1-2 Signal and earth ground:
 These two pins are connected to earth ground and represent the ground
reference for all the other pins.

 3-6 Digital Inputs 5 to 8 and Analog Input Channels 1-4:
 Input signal only. Can be used as 5 volt TTL inputs, or analog voltage inputs.
The input impedance is approximately 100 kohms with a maximum input
voltage range of +/- 10 volts.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 21

 7-8 Digital Inputs 3 to 4:
 Input signal only. Digital 5 volt TTL inputs.

 9-10 Digital Inputs 1 to 2 and Analog Comparator Inputs:
 Input signal only. Can be used as 5 volt TTL inputs, or inputs to an analog
voltage comparator. Pin 10 is the comparator positive input, while pin 9 is the
comparator negative input. The comparator voltage input range is 0 to 5 volts.

 11 Timer Output and PWM Channel 1:
 Output signal only. This pin can be used to output digital pulses of
programmable duration, or continuous square waves of a programmable
frequency. As an alternate function, it can be set as a 10 bit pulse width
modulator (PWM) output.

 12 Digital Input/Output 7 and Pulse Timer Input
 Input or output signal. This pin can be programmed as a fixed digital input or
output. As an alternate function, it can be used to measure digital pulse
durations between rising edges, falling edges, positive pulses, and negative
pulses. In the input modes, the signal must conform to +5 volt TTL levels.

 13 Digital Input/Output 6 and Pulse Counter Input
 Input or output signal. This pin can be programmed as a fixed digital input or
output. As an alternate function, it can used to count rising edges in either a
free-running mode or time gated mode of operation. In the input modes, the
signal must conform to +5 volt TTL levels..

 14 Digital Input/Output 5
 Input or output signal. This pin can be programmed as either an input or
output.

 15 Digital Input/Output 4 and PWM Channel 2:
 Input or output signal. This pin can be programmed as a fixed digital input or
output. As an alternate function, it can be used as a 10 bit pulse width
modulator (PWM) output.

 16 Digital Input/Output 3:
 Input or output signal. This pin can be programmed as either an input or
output.

 17 Digital Input/Output 2 and Async Serial Transmits Data Output:
 Input or output signal. This pin can be programmed as either an input or
output. As an alternate function, it can be used for asynchronous serial
communications as a transmit data output pin.

 18 Digital Input/Output 1 and Async Serial Receive Data Input:
 Input or output signal. This pin can be programmed as either an input or
output. As an alternate function, it can be used for asynchronous serial
communications as a receive data input pin.

 19-26 Digital Output 1 to 8:
 Output signal only. These 8 pins are fixed 5 volt TTL level digital outputs.

 DC Voltage Measurement
 Two rear panel banana jacks can be used to measure DC voltages up to +/- 200
volts. The input impedance of the banana jacks are approximately 1 Mohms to
earth ground, and 2 Mohms with respect to each other. The maximum voltage
between either input and earth ground is +/- 200 volts. Care must be taken not to
exceed this limit. The DC voltage measurement function is programmable via the
A.I.WorkBench software. See section 4-2: IO Object, for more information on
programming the this function.

 Data Storage
 In addition to the input and output functions, the IO module adds the capability for
any AI-80 program to store and retrieve up to 32 numeric values or up to 128
characters in the IO module’s non-volatile storage. This can be used by
programs to save setup or configuration information, as the data is retained even
if the AI-80’s power is removed.

ADVENT INSTRUMENTS INC.

22 AI-80 CALLER ID SIGNAL GENERATOR

 Bell 202, V.23 FSK Decoder
 This optional component adds the capability to receive and decode FSK
modulated serial data. It can capture up to 700 bytes of asynchronous serial data
encoded by either Bell 202 or V.23 Frequency Shift Keying (FSK). This expands
the AI-80's testing capability by including two-way FSK applications such as ADSI
and SMS.

 As this option is a software component, it can be added to any AI-80 (revision 3
software or later) at any time.

 Enabling The FSK Decoder
 To enable the FSK decoder, a software key must be entered into the AI-80. This
is performed with the A.I.WorkBench software with the following steps:

 1) Connect the AI-80 to the PC and execute the A.I.WorkBench software.

 2) Select the [HELP] [DEVICE INFORMATION] menu command. This shows

the following window:

 3) Click the mouse on the "Licensed Options" button in the lower left corner of

the window. This reads all the software keys from the AI-80 and displays their
contents.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 23

 4) To enter the key required by the FSK decoder, click the mouse on the
"Add/Edit" button. In the displayed window, enter the provided software key
and click the "OK" button.

 5) The key value entered is now shown in the Licensed Options window. To

make any changes click the "Add/Edit" button. Check to ensure the key value
is correct. Once verified, click the "Close" button. This saves the key
contents to the AI-80.

 6) As the AI-80 only checks for the software keys upon power up, exit the

A.I.WorkBench software. Then turn off the AI-80, wait a second, and turn on
the AI-80. If the correct key value has been entered, the display momentarily
flashes "So 1" following the software version.

 Using the FSK Decoder
 For information on how to use the FSK decoder in a program, see section 4.2
Hardware Abstraction Layer. The description of the "FSK" properties explains the
decoder can be used to receive data bytes from external devices.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 25

 Section 3 Using the A.I. WorkBench Software

 This section describes how to use the A.I.WorkBench software to create and
modify programs for the AI-80. Detailed reference information on the
programming language, AI-80 hardware abstraction, and system software
functionality is described in section 4.

 Section Contents:

• Connecting to the AI-80
• Creating a new program
• Working with the flash memory
• Working with projects
• Using the source file editor
• Executing programs

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 27

 Section 3-1 Connecting to the AI-80

 Once the A.I.WorkBench program starts, it attempts to establish communications
with the AI-80. Though not necessary to develop and compile programs, a
connection is needed to transfer any program or data to and from the host PC
and AI-80. To simplify the complexities of establishing a serial RS-232 link with
the AI-80, the program automatically scans all communications ports between
COM 1 and COM 4, along with configuring the port settings, such as baud rate,
parity, and number of stopbits, to the correct settings.

 If an AI-80 has been connected property to a host PC, and the unit is turned on,
the status bar of the A.I.WorkBench program should show the following

 This indicates that a successful link is setup, and that the AI-80 is ready to initiate
transfers of data to and from the host PC. The communications port number and
port settings are saved to a configuration file when the A.I.WorkBench program is
closed. As such, the next time the program is started, it will automatically use the
last settings in searching for an AI-80. If unsuccessful, it will fall back to scanning
through all the available ports on the PC.

 At any time, the status of the communications link with the AI-80 can be viewed
by selecting the [VIEW] [DEVICE COMMUNICATIONS LINK] menu command.
This displays a window similar to the figure below. The current status of the
connection is displayed, along with options to change either the communications
port used, or the baud rate setting.

 While this window is active, it will automatically test the connection at regular
intervals. Disconnecting the AI-80 or turning it off will result in a lost connection,
which will be reflected in the above status window.

ADVENT INSTRUMENTS INC.

28 AI-80 CALLER ID SIGNAL GENERATOR

 To change the communications port or baud rate settings, simply select the new
settings from the two pull down boxes and click the mouse on the Change button.
The host PC will then attempt to re-establish communications using the new
settings.

 If the AI-80 becomes disconnected for extended periods of time, turned off, or
another AI-80 is connected to the host PC, the communications link will be
broken. To reconnect to the AI-80, click the mouse on the Re-Initialize
Communication button.

 A toolbar short cut can also be used to re-establish lost communications with the
AI-80. By clicking the mouse on the indicated tool bar button below, the
Communication Status & Control window will appear and attempt to restore
communications with the connected AI-80.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 29

 Section 3-2 Introduction to Programming

 The basic concepts in creating a program for the AI-80 are explored in this
section. Later sections explain in greater detail the process of writing programs.
All the steps needed to create a program are described in a tutorial fashion. It is
assumed an AI-80 has been connected to the host PC, and that a successful
communications link is established.

 The steps needed to create a program for the AI-80 can be broken down as
follows:

 Step: 1. Create a new project file for the program
 2. Create the program source file(s)
 3. Compile the program, and correct any errors detected
 4. Load the program into the AI-80’s memory for debugging
 5. Execute and debug the program
 6. Once error free, load the program into the AI-80’s flash memory

 Creating a New Project
 Before a program can be written, a project file must be created. The project file
contains various details on the program, such as its title, program ID number,
number of source files, compiler options, and debugging options. Each program
is treated as a separate project, and requires a distinct project file. It is possible
to use an existing project file, and modify its contents to suit a new program.
However, for the purpose of this tutorial, a new project file will be created.

 Step 1: From the FILE menu, select NEW PROJECT

 Note: If a project is already loaded into the A.I.WorkBench program,

and a source file has been changed, the program will ask if the current
project should be saved before creating a new project.

 Selecting NEW PROJECT automatically displays the Project Properties window.
All of the various project settings are shown here and can be changed as desired.
For most common programs, only the information in the General tab needs to be
specified. The Flash Program Title refers to the displayed name of the program,
when viewing the file directory of the AI-80’s non-volatile memory. The Program
Number is the key manner in which the AI-80 identifies each program. As such, it
must be a unique number for each program contained in the AI-80. Using an
existing program number, will result in the older program being over written when
the new program is saved into the AI-80’s flash memory.

ADVENT INSTRUMENTS INC.

30 AI-80 CALLER ID SIGNAL GENERATOR

 Note: Before saving a program into the flash memory, the
A.I.WorkBench program will request confirmation if a program of the
same ID number already exists.

 As a general convention, the program numbers should fall under one of two
groupings. The first group of program numbers from 10 to 99 is reserved for
standard programs that are factory loaded. Program numbers from 500 to 599 is
reserved for user programs.

 The Target Device pull down box is used to specify the output format for the
compiler. It should be set to show “AI-80”. It is important the version number
displayed is not greater than the software version number of the AI-80 connected.
If so, the compiler may use instructions that are not available in AI-80 being used.
The A.I.WorkBench is always distributed with the latest AI-80 software version
files as shown in the pull down box. As such, the AI-80 can be upgraded to
match the same version as the compiler. To upgrade the AI-80 software, see
Section 4-6: Upgrading the AI-80 Software.

 To continue with this project:

 Step 2: Set the Flash Program Title to: My First Program.
 Set the Program Number to 500.
 Click the OK button.

 Clicking OK will close the Project Properties windows, and display the Source File
editor window. The editor is used to write the program source files. It supports
working with multiple files, and includes a feature to ease programming by
providing immediate help on all language commands and statements.

 Writing the Program
 As shown below, the editor will display an empty file titled “[untitled] - [new]”.
This indicates that no file name has been given to the source file and it is a new
file. For very large projects, the program can be broken into multiple source files.
This provides a easy way to organize and collect common program modules, by
keeping them in the same file. When creating a new project, only one source file

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 31

is created. If more files are desired, they can be added in the Project Properties
window. Only one source file will be used in this example program.

 The Instant Help feature of the editor uses the right side of the window. It can be
turned on or off by selecting the check box in upper right corner of the editor.
When enabled, the Instant Help will list all the programming language keywords,
functions, subroutines, and built-in variables available. Clicking on any of the
items, displays additional information on its use in the text area below the list. In
the above figure, a brief description of the built-in absolute (Abs) function is
described.

 When typing a keyword in the editor window, the Instant Help list box will attempt
to find a matching entry in its list. It highlights its best guess, and displays any
additional information available. Pressing the TAB key will complete the word
automatically, by transferring it to the program listing. Also, double clicking the
mouse on any item in the Instant Help list will copy it to the program listing.

 The example program will perform a simple function by ringing a telephone
connected to the AI-80 Port A. If the telephone goes off-hook, the program will
detect this and generate a dial tone. A listing for the sample program follows
below.

 Step 3: Type the following example program into the source file editor.

Note, this same project has been included in the A.I.WorkBench
distribution. To load the project and source file (instead of typing it in), do
the following:

 a) Select the [FILE] [OPEN PROJECT] menu setting. If the

programs asks to save the contents of the project created, select
NO.

 b) From the \PROJECTS directory, select the project file:

FirstProgram.prj and click the OPEN button.

ADVENT INSTRUMENTS INC.

32 AI-80 CALLER ID SIGNAL GENERATOR

 The structure of the sample program is relatively straight forward. All program
lines that start with an asterisk ‘*’ or semi-colon ‘;’ are treated as comment lines
and ignored.

 * Title: My First Program
 * Program Number: 500

 * This program will ring the telephone line until a connected
 * telephone goes off-hook. At that point, the program
 * will generate a dial tone. Once the telephone goes back
 * on-hook, the program will end

 Const True = 1
 Const False = 0

 Process Start

 ;set the ringing parameters and turn on the ringing gen
 Let Ring.Freq = 25.0
 Let Ring.Level = 60.0
 Let Ring.Enable = True

 ;wait till the phone goes off-hook, then turn off ringing
 Loop
 If Telint.Hookdetect = True Then
 Exit Loop
 End If
 End Loop
 Let Ring.Enable = False

 ;generate a dial tone (440 and 350 Hz)
 Let Tonea.Freq = 440
 Let Toneb.Freq = 350
 Let Tonea.Level = 0.1 ;level at 0.1 Vrms
 Let Toneb.Level = 0.1 ;level at 0.1 Vrms
 Let Tonea.Enable = True ;turn on tone
 Let Toneb.Enable = True ;turn on tone

 ;wait for telephone to go on-hook, then end program
 Loop
 If Telint.Hookdetect = False Then
 Exit Loop
 End If
 End Loop

 End Process

 The body of the program is contained within a PROCESS block. All of the
program statements, for any program, must reside inside either a process,
subroutine, or function block. Since the AI-80 supports parallel execution of
multiple programs, the process block identifies the statements associated within a
single process. Most programs require only one PROCESS block; however,
more complex programs can divide their task into multiple PROCESS blocks,
which execute in parallel. For more information on the programming language,
see Section 4-1.

 The program can be broken down into 4 logical sections. The first, simply sets
the desired ring generator parameters, and enables the ring generator. The next

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 33

section consists of a loop where the program will wait indefinitely till the
connected telephone enters the off-hook state. Once off-hook, the loop is exited,
and the ring generator disabled. The third section generates a dial tone. This is
accomplished by setting tone generators A and B to 440 Hz and 350 Hz
respectively, and then enabling them. Finally, the fourth section of the program
consists of a loop waiting for the telephone to go on-hook. The program will wait
indefinitely for this to occur. Once on-hook, the program terminates when it
reaches the END PROCESS statement.

 At this stage, the above program listing should be contained in the Source File
Editor window. The next step is to compile the program.

 Compiling the Program
 The compiler converts the high level language statements contained in the
source file(s) into the native low-level language used in the AI-80. It is started by
selecting the [RUN] [COMPILE] menu command, or by pressing Shift-F5.

 Step 4: Start the compiler by selecting the [RUN] [COMPILE] menu

command.

 Note: Invoking the compiler will always save the current project file

settings and source file contents to disk. When creating a new project
with an untitled project and/or source file, you will be asked to enter a
name for the project and/or source file. For this example, use the name
of “FirstProgram” for both the project file and source file.

 A status window shows the progress of the compiler as it processes the source
file(s). It indicates the number of lines compiled along with a count of the number
of errors detected. One of the default settings in the project file will stop the
compiler after the first error. As a result, if an error is detected, the compilation
process is immediately stopped.

 Once the compiler has finished, or has detected too many errors, the status
window will disappear and the results of the compilation are displayed in the
Compiler Status/Error window. If the above program was entered correctly, the
window will report that no errors were detected, as shown below.

ADVENT INSTRUMENTS INC.

34 AI-80 CALLER ID SIGNAL GENERATOR

 Upon a successful compilation, the status window displays the program size and
number of variables used along with their respective usage percentages.

 In case the compiler does find an error in the source file(s), it will display the error
message in the status window, along with the line number and source file where
the error was located. Clicking the mouse on the error message will highlight the
error in the source file editor.

 Step 5: After the compiler has finished, ensure that no errors were

detected. If an error was reported, click the mouse on the error message
to highlight the offending line in the source file. Ensure the highlighted
source file line matches the program listing shown above. Re-compile
the source file and proceed when error free..

 Loading and Running Programs
 Once a program has been compiled without error, it can be loaded into the AI-
80’s memory and executed. Though a project can be compiled without an
attached AI-80, in order to load the program into the AI-80, the host PC must
have an established communications link.

 Step 6: Select the [RUN] [LOAD & RUN] menu command, or press the

F5 key. This transfers the program into the AI-80 and starts it. Any
telephones connected to the Tel. Line RJ-11 jack on Port A should start
to ring.

 The telephone will ring until it goes off-hook. At that time it will start to generate a
dial tone. Once the telephone goes back on-hook, it will end the execution of the
program.

 Two toolbar shortcuts can be used to either compile the program, or load & run it.
These are shown below. It is also possible to use the [COMPILE & LOAD &
RUN] menu command, which performs both steps automatically. A keyboard
short cut for this command is Ctrl-F5.

 At this stage, the program can be modified and/or debugged by making source
file changes, compiling the program, and executing it in the AI-80. Once the
program is operating as desired, it can be loaded into the AI-80’s non-volatile

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 35

memory storage. Programs stored in the non-volatile memory can be executed
without the use of the host PC.

 Saving the Program In Flash Memory
 In order to use any programs when the AI-80 is not connected to the host PC, the
program must be stored in its non-volatile flash memory. Programs are identified
by their program number, which is specified in the Project Settings window.
When storing a program into the AI-80 flash memory with the same number as
an existing program, the existing program will be overwritten with the new
program. Before this occurs, the A.I.WorkBench program will request
confirmation.

 Step 7: Save the program to flash memory. Select the [FILE] [LOAD

PROGRAM INTO FLASH] menu command, or press Ctrl-W.

 In this example, the program number was set to 500. Once the program has
been stored in the flash memory, it can be accessed and executed by the front
panel keys. Using the Program Selection Plus/Minus keys, the displayed
program can be incremented to 500. Pressing the Start key will begin execution
of the program by ringing the telephone line. The program can stopped anytime
by pressing the Stop key, or suspended by pressing the Pause key.

 At this point, the connection to the host PC is no longer required. The AI-80 can
be turned off, disconnected from the host PC, turned back on again with the new
program still stored in the unit.

 These are the basic steps used to create programs for the AI-80. The
programming language of the AI-80 is very flexible and can perform a wide range
of functions. Even the programs that provide some of the system functions are
written in the same programming language. Thus it is possible to completely
customize the AI-80 for various applications. Section 4 provides more details in
the programming language as well as an overview to the system files and how
they can be customized.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 37

 Section 3-3 Working with the Flash Memory

 The flash memory within the AI-80 provides a means to execute custom
developed programs without the need for a permanent connection to a host PC.
In some production related applications, it is far more convenient to have the AI-
80 perform a pre-programmed task without any additional equipment.

 Listing Files
 Managing the contents of the flash memory is done via the Flash Memory Files
window within the A.I.WorkBench software. Clicking the mouse on the [VIEW]
[FLASH MEMORY FILES] menu command displays a window similar to the figure
below. The AI-80 is queried for a list of its files which are then displayed in a
simple hierarchical manner.

 Normally, only the User Program Files are displayed. These are the programs
created with the A.I.WorkBench software to perform various functions and tasks
in testing telephone related equipment. Other files, such as system related files
are also stored within the flash memory, but not normally displayed. The User
Program Files are listed by program number and title. The program number is
used to reference the various programs, and each program number must be
unique. It is defined within the project settings, and can be changed if required.

 Though normally, only the User Program Files are displayed, it is possible to
display and modify some of the system level files. These files control and set the
user interface of the AI-80 and may be modified by the A.I.WorkBench software.
Applications for this would be the optimization of the software for very specific
and repetitive tasks. For more information on how to display the system files,

ADVENT INSTRUMENTS INC.

38 AI-80 CALLER ID SIGNAL GENERATOR

their operation and function, and common customization techniques, see section
4-3 System Software Overview

 Note: Depending on the file sizes, some file operations can consume

large amounts of time to execute when the AI-80 communication speed
is set to slow baud rates, such as 9600. If possible, the baud rate should
be increased to a higher rate in order to minimize file transfer times. See
section 3-1: Connecting to the AI-80 for more information.

 File Operations
 With the Flash Memory Files window opened, the following basic file operations
can be performed in order to manage the file contents.

• Load a file into the AI-80
• Read a file from the AI-80
• Delete a file from the AI-80
• Display a file’s properties

 The AI-80 program files are stored on the host PC using a special file format, with
the .apf file extension. These files include not only the program object code, that
the AI-80 executes, but additional information such as the program number, title,
compiler object code file name and its date and time stamp. The .apf files can
only be created in two manners. The first is by the compiler, which if no errors
were detected, creates the file. The second is by reading a file from the AI-80’s
flash memory and saving it to disk.

 To load a file into the AI-80, select the [FILE] [LOAD FILE INTO FLASH] menu
command. A window will appear from where the .apf file can be chosen. If the
selected file contains a program number that already exists within the connected
AI-80, confirmation is requested before proceeding. Since every file number
must be unique within the flash memory, loading a file with an existing program
number will over write the existing file.

 To read a file from the AI-80, first click mouse and highlight the file to save in the
Flash Memory Files window. Then select the [FILE] [READ FILE FROM FLASH]
menu command. A file name, with a .apf extension, must be then chosen. The
file contents from the AI-80 will then be transferred to the host PC and saved with
the file name chosen. Storing a copy of the AI-80 files on a PC can serve as a
backup function or allow for transferring the files to another AI-80.

 If a file is no longer required within the AI-80, it can be deleted by first highlighting
the file in the Flash Memory Files window. Then select the [FILE] [DELETE FILE
FROM FLASH] menu command. A confirmation is always requested before the
file is deleted, as once deleted, the file can not be recovered.

 Note: If the need to transfer or delete a large number of files from the

AI-80 arises, it can be much faster to create a simple ASCII text script
that lists in sequence the file operations needed. See the section 4-4:
Auto-Config Command Files, on how to create and use these command
files.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 39

 File Properties
 The file properties window displays additional file information that is not shown in
the normal listing. Usually the most important information displayed is the file’s
source. For programs, this is the name of the object code file, which is the same
name as the project file. Thus it is possible to determine what project file is
associated with a program contained in the flash memory. Also, the date and
time the source file was created is included as a file property. This finds use in
tracking revisions of the source file and ensuring the latest file is contained in the
AI-80’s flash memory.

 File properties are displayed by clicking the mouse on the desired file in the Flash
Memory Files window, and then either pressing the right mouse button or
selecting the [FILE] [PROPERTIES] menu command. A window similar to the
figure below is displayed.

 The file title and its source file name with date/time is shown, along with additional
data such as the file identifier, length, and address. Normally this additional
information is only needed for debugging purposes.

 Though not a file, some information of the connected AI-80 is shown when
displaying its properties. This is accomplished by clicking the mouse on the first
item in the Flash Memory Files window, and selecting the [FILE] [PROPERTIES]
menu command.

ADVENT INSTRUMENTS INC.

40 AI-80 CALLER ID SIGNAL GENERATOR

 This displays the serial number of the AI-80 in addition to its software version and
current utilization of the flash memory.

 Saving All Program Files
 At times it may be convenient to read all the program files from an AI-80 and save
them to a PC file. Instead of reading a single file at a time, multiple files can be
read by selecting the [FILE] [READ ALL FILE(S) FROM FLASH] menu command.
This displays a dialog window similar to the following.

 To save the AI-80 files, choose a directory to save the files to from the list boxes
on the left side of the above window. Then select the individual files to save from
the right side list box. The program number and title for each file stored in the
flash memory is listed. If the program has a check mark beside its number, it will
be saved. To prevent saving a particular program, click the mouse on its check
box. This toggles the check mark on and off.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 41

 Section 3-4 Working with Projects

 This section describes how to work with various projects. A project consists of a
series of compilation options and one or more source files, where the final result
is a program that can be loaded into an AI-80 and executed. All the various
settings needed to produce a single executable program are contained within the
project file.

 New & Existing Projects
 The first step in creating any program for the AI-80 is to create a new project file.
This can be done in two ways. The first is to use all the default settings, by
selecting the [FILE] [NEW PROJECT] menu option. This creates a new project,
as of yet untitled, with all the default settings and one untitled source file. The
default project settings are designed to be used with any AI-80 user program,
which is the most common case. Programs that are designed to perform system
level functions may require changes to the default project settings.

 The second method to creating a new project is to open an existing project, along
with all the source files, and save the project to a new file name. If the
functionality of the new program is similar to an existing program, this method is
much simpler. Once the project has been copied to a new file name, only the
changes between the two projects are made. To perform this operation, open a
project with the [FILE] [OPEN PROJECT] menu command, followed by the [FILE]
[SAVE AS PROJECT] menu command.

 When saving a project under a new project file name, the source files associated
with the project are not changed. If the new project file is in the same directory as
the old project file, the same source files will be used by both projects. However,
if the directories are different, when the new project file is saved, it copies all of
the source files to the new directory as well. It is important to note that all the files
related to a project must be in the same directory. The source files that required
changes should be saved under a new file name, in order not to make changes to
the original project’s source file, when they are stored in the same directory.

ADVENT INSTRUMENTS INC.

42 AI-80 CALLER ID SIGNAL GENERATOR

 The last four projects opened are remembered by the A.I.WorkBench program,
and upon restarting the program, it will immediately display a window similar to
the figure above. To open any of the projects listed, simply select it and press the
OPEN button, or double click the mouse on the desired project file.

 Project Settings
 All of the project settings can be viewed and changed by selecting the [VIEW]
[PROJECT SETTINGS] menu command. A window similar to the following figure
will be displayed. It consists of five different ‘tabs’ containing various settings.

 The first tab, termed General, shows the program title and number to use along
with what device the compiler will generate code for. The program title is
displayed in the Flash Memory Files window and can be up to 50 characters in
length. The program number is used as the primary means for the AI-80 to
identify and distinguish programs contained in the flash memory. As such, each
program contained in the AI-80 must have a unique program number. The
normal convention is for user program numbers to range from 10 to 99, and 500
to 599. The lower range of 10 to 99 is meant for default factory loaded programs,
while 500 to 599 can be used for user developed programs. Any number in the
range of 1 to 65535 is valid and can be used. However, program numbers below
10 should be reserved for system functions only.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 43

 The Target Device drop-down box indicates which AI-80 software versions are
supported by the current compiler. The version selected should always match the
software version of the AI-80, and never be higher. If the AI-80 software version
is less than displayed in the drop-down box, it should be upgraded in order to take
advantage of any new features. To upgrade the AI-80 software see section 4-6:
Upgrading the AI-80 Software.

 The following tab on the Project Properties window is labeled Source Files.
Clicking it displays all the source files that will be compiled into a program file.
New source files can be added by selecting the ADD button. To remove a source
file, select it in the list and click the mouse on the REMOVE button.

 The Symbol Files tab is used to display any symbol tables from other projects that
are included in this project. The purpose of using another project’s symbol table
is so that inter-process variables can be shared between different programs.
This allows for the possibility to run multiple programs at the same time and share
data between the programs.

 Note: As of version 1.8 of the A.I.WorkBench program, the importation

of other projects symbol tables is not supported. Though data can still be
shared between programs by declaring IMPORT and EXPORT variables
with identical register numbers.

 The fourth tab, labeled Compiler, displays a number of compiler related options.
The first item is the Startup Process Name. When a program consists of multiple
processes, only one of them is initially started. The other processes within the
program must be controlled by the first process. As such, the compiler must
know which is the first process to be started. The name of that process is
entered in the “Startup Process Name” text box, as shown below.

 If no startup process is defined, or the startup process name does not exist, the
compiler will then use the first process defined in the program listing as the
startup process. For the majority of programs that only contain one process, it
automatically becomes the startup process.

ADVENT INSTRUMENTS INC.

44 AI-80 CALLER ID SIGNAL GENERATOR

 The two following check boxes allow the access to system level Hardware Object
Properties (HOP’s) and control the generation of debugging information
respectively. Normally, access to the system level HOP’s in only required by
programs performing system level functions. Since improperly accessing these
HOP’s can cause unpredictable operation, access is normally disabled. The
option to generate debugging code, while increasing code size, gives the ability to
single step through a program for debugging purposes, along with setting
breakpoints.

 Note: As of version 1.8 of the A.I.WorkBench program, a built-in

debugger capable of supporting breakpoints and single-step functions is
not available. These features are planned for a future release.

 The fifth tab, labeled Debugger, controls various options applicable when
executing compiled programs. In testing a compiled program, it is normally
downloaded to the AI-80’s internal RAM and executed. The download time into
RAM is generally much faster than saving the program into the flash memory
storage. However in order to mimic the same conditions as the program would
execute from flash, the following settings can be altered.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 45

 The first check box, if enabled, causes the AI-80 to execute the System Reset
program before running any programs downloaded into its RAM. This ensures
that every time the downloaded program is executed, all the AI-80 hardware
settings (HOPs) are in their default state, and not the same as set by the last
program executed. When executing programs from the flash memory via the
front panel keys, the System Reset program is also used to maintain the default
hardware settings before a program starts.

 The second check box, if enabled, will make sure the System Launcher program
is active before the downloaded program is started. The System Launcher
program manages the execution of other programs and provides the user
interface via the front panel keys. It allows other programs to be paused or
stopped while in progress and resets all the hardware settings when a program
finishes. Since in most applications, the System Launcher program will be active,
the check box should be enabled. However, when developing system level
programs or a custom user interface program, the standard System Launch
program should not be executing at the same time. In these cases, the check
box should be disabled.

 The third setting controls which processor number the program will be started
with. The AI-80 interpreter can execute up to four different processes. This can
be broken into either multiple programs, each one using a process, or a single
program using up to four simultaneous processes, or any combination in between
as long as only four processes are executing at any one time.

 Normally, programs will be started on process number two. Process one is used
by the System Launcher program, if active. Processes three and four are free
and can be utilized by the program. Only if writing system level programs should
this setting be changed. If user programs do not use process number two, then
the System Launcher will be unable to control the programs execution.

 Project Libraries
 The last tab in the Project Properties window is used to select which (if any)
libraries are included with the project. Clicking the mouse on the tab shows a list
of all the libraries that are currently available, as shown below. This includes the
default libraries included with the A.I.WorkBench software and user created
libraries.

ADVENT INSTRUMENTS INC.

46 AI-80 CALLER ID SIGNAL GENERATOR

 The libraries are a collection of common subroutines and functions. They can
simplify programming by providing routines that perform high level functions,
freeing the user from developing common and repetitive low level functions. Two
libraries are supplied with the A.I.WorkBench software. They are:

 Caller ID Message Builder:
 This library contains a collection of subroutines that simplify the
creation of FSK Caller ID based message. Both single data and
multiple data message formats can be created, including the visual
message waiting variations. The subroutines provided can easily
create complex multiple messages with various parameters, such as
date & time, calling number, calling name, call qualifier, and visual
indicator. The resulting data from the message is programmed in the
AI-80’s DATA object, which can then be used to generate the FSK
modulated signal.

 Caller ID Message Sender:

 This library contains a collection of subroutines and functions that
generate FSK Caller ID transmissions. Both type I (on-hook), and
type II (off-hook) transmissions can be generated, with programmable
levels and timing. Designed to be used with Caller ID Message
Builder library, these routines can send the message created by that
library.

 To include a library with a project, click the mouse in the square box beside the
library name. Any library with a check mark is included in the current project. In
addition to the library name, its version and target information is included in the
displayed list. The compiler will ensure that the target version of the library is
compatible with the project. User created libraries can be added to the list by
selecting the “Add a New Library” button. This opens a dialog window from which
the library details and source file can be entered. Likewise, to remove a library
from the list, select the library then click the mouse on the “Remove a Library”
button.

 Once a library is included in a project, usage information on that library is included
in the source file editor. In the above Project Properties window, the Caller ID
Message Builder library was checked and included in the project. Once the

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 47

above window is closed by pressing the OK button, the Source File window will
include a new entry in its File Name list box. As shown in the following figure, a
new entry called “Caller ID Message Builder [LIB]” is included in the drop-down
list box. This is not the source file for the library, but rather a text file that explains
the usage of the routines in the library. It describes each routine in detail and also
provides examples.

 Note: For information on how to create user libraries, see section 4-5.

 Saving Projects
 All the project settings and source files are automatically saved before the
compiler is started. For new projects that are untitled, the user will be requested
to supply a project file name and any source file project names. Projects can be
saved at any time by selecting the [FILE] [SAVE PROJECT] menu command.
This will save both the project file and all source files contained within the project.
Selecting the [FILE] [SAVE AS PROJECT] menu command allows a new project
file name to be used. If the new project file name is in a different directory as the
previous file name, all the source files will be automatically copied to the new
directory as well.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 49

 Section 3-5 Using the Source File Editor

 The source files used with any project are plain ASCII text files. As such any
editor can be used to create and change the files contents. The built-in source
file editor includes some features designed to make developing AI-80 programs
easier.

 Working with Source Files
 The source file editor is shown by selecting the [VIEW] [SOURCE FILE] menu
command. If an existing project file is opened or a new project started, the
source file editor is automatically displayed.

 The following figure displays the FirstProgram source file (as developed in
Section 3-2: Introduction to Programming. The window can be broken down into
three different areas. The top section displays various status and control items.
The left side displays the source file contents, and the right side displays optional
help information.

 The top status area shows the current file name being edited in the drop-down list
box. If more than one source file is part of the project, the remaining source files
can be selected from the list. Choosing a new source file will automatically save
any changes made to the current file and then load and display the contents of
the new file. If a project’s source file is new, then the text “ - new” is appended to
the file name displayed. Once the file is saved, the appended text will be
removed.

ADVENT INSTRUMENTS INC.

50 AI-80 CALLER ID SIGNAL GENERATOR

 To change the current source file name, select the [FILE] [SAVE AS SOURCE
FILE] menu command. A window will appear from which a new name can be
chosen. Once the SAVE button is pressed, the file will be saved under the new
name. A message will appear requesting if the project file should be updated with
the new source file name. If yes is answered, then the project settings and the
displayed file name in the drop-down list will reflect the new source file name. If
no is answered, then the project settings and displayed file name remain as
previous; however, a copy of the file has been saved under the new name.

 The area to the right of the file name drop-down list box shows the current line
number the cursor is at, and whether or not the caps lock is active and if the
editing mode is overstrike or insertion.

 Instant Help
 The check box in the upper right portion of the window determines if the instant
help information is displayed. The default setting is enabled. The help feature is
composed of the top list box, which shows all the keywords and hardware
properties (HOP’s) that can be used within a program. Also included in the list
are any variables, constants, subroutines, functions, and labels defined in the
source files. Once the compiler has read all the project’s source files, it creates a
symbol file. This symbol file is read by the Instant Help feature and it updates the
list with the various symbols defined in the program. The icon associated with
each item in the list represents the type of symbol it is. The following list
describes the meaning of each icon.

 Programming language keyword (reserved word)
 Functions, either built-in to the language or user defined
 Subroutines, either built-in to the language or user

defined
 Hardware property (built-in variables used to control the

AI-80’s hardware settings)
 User defined variables (can be read from or writen to)
 User defined constants, or parameters in functions or

subroutines (can only be read from)
 User defined labels, or program processes

 The text area, just below the list of all keywords and symbols is used to provide
information on the item selected in the list box. For programming keywords, this
is syntax information and usage of the keyword. Subroutines and functions
display usage information if they are built into the programming language. If user
defined, the location and source file of their definition is shown. Hardware Object
Properties (HOP’s) display their data type, access type (if read only or write only),
and any restrictions in use, including minimum and maximum values, if
applicable. Variables and constants display their data type, their parent (who
owns them), and their declaration location in the source file. Finally, labels show
their parent and location in the source file.

 As words are typed in the selected source file, the Instant Help feature attempts
to matched the word with the closest item (alphabetically) in its list of symbols and
keywords. It highlights this item and displays any relevant information in the text

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 51

area below the list. Pressing the TAB key will then complete the word in the
source file with the selected item in the list.

 For example, typing the letters “pr” will highlight the keyword “Process” in the
Instant Help list box. By pressing the TAB key, the editor will complete the word
and enter “Process” where “pr” had been. This helps to speed up writing
programs, since once enough characters have been typed, the editor can finish
the word by pressing the TAB key.

 Alternatively, double clicking the mouse on the selected item in the Instant Help
list box copies the item to source file window at the current insertion point. This
allows simple program lines to be written by double clicking the mouse on the
desired items. Clicking the right mouse button, when over the list box, inserts a
new line into the source file.

 At the completion of the compilation process, the Instant Help feature will update
the item list with any new symbols defined in the program. For very large
programs, this can take a few seconds. If this becomes too time consuming, the
Instant Help feature can be turned off by clicking the mouse on the check box in
the upper right side of the window.

 Editing Files
 When editing the source files, basic clipboard functions can be used through
either the [EDIT] menu or the keyboard shortcut keys. These include the
standard Cut (Ctrl-X), Copy (Ctrl-C), and Paste (Ctrl-V) functions. Two additional
operations available are Find and Replace text. These can be used to locate text
phrases or words from within the source file.

 To use the Find feature, select the [EDIT] [FIND] menu command, or press the
Ctrl-F key. This displays a window similar to the following. The text to search for
is entered in the top of the window. Various searching options can be selected
from the two groups of control buttons. Pressing the FindNext button starts the
search for the matching text.

 If any text has been highlighted in the source file before the Find text window is
displayed, then the selected text is automatically copied to the Find What field in
the window.

 The Replace feature is very similar to the Find feature, except that it will replace
the located text with a different text string. Selecting the [EDIT] [REPLACE] menu

ADVENT INSTRUMENTS INC.

52 AI-80 CALLER ID SIGNAL GENERATOR

command displays a window similar to the above figure, from which the text
replace function and be controlled.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 53

 Section 3-6 Executing Programs

 Once a project has been compiled without any errors, it can be downloaded into
an AI-80 and executed. This requires that the AI-80 is connected to the host PC
and has established a communications link.

 The Run menu contains various commands to control the operation of AI-80
programs. Three basic steps are required to execute any program. They are:

• Compile the program without any errors
• Load the program in the AI-80 RAM
• Run the program

 Though it is possible to load a compiled program into the AI-80’s flash memory
and then executed it from the flash memory, it is usually faster to load the
program in the AI-80 internal RAM and execute from there. Once the program is
finalized and debugged, it can be loaded into the flash memory.

 The function of each of the commands in the Run menu is listed below.

 Compile
 The first command, Compile, generates the object code from the source files. If
no errors were detected, the program can be loaded into the AI-80 and executed.

 Compile & Load & Run
 As an extension to the Compile command, this command also compiles the
program, and if no errors were detect, it automatically loads the program into the
AI-80’s RAM and begins execution.

 Load & Run
 If the program has been previously compiled and no additional changes are
required, the Load & Run command will transfer the program to the AI-80 and
start its execution.

 Run

ADVENT INSTRUMENTS INC.

54 AI-80 CALLER ID SIGNAL GENERATOR

 Once a program has been loaded into the AI-80’s RAM it will remain there unless
certain flash memory files operations are performed. The Run command will
execute any program that is contained in the AI-80’s RAM.

 Stop
 The Stop command will terminate the program executing. However, this
command assumes that the program is only operating from the startup process,
as defined in the project settings. If the program starts other processes, those
will not be stopped. To stop all processes running, use the Stop All command.

 Stop All
 This command terminates all processes active in the AI-80. Unlike the Stop
command which terminates only the startup process of the program, this
command will stop all of them. If the System Launcher was executing in one of
the processes, it will also be terminated. As such the front panel keys may not
function. As long as within the project settings the System Launcher option is
enabled, it will automatically be restarted once the program is executed again with
the Run command.

 Run Flash Program
 This command can be used to execute any program residing in the flash
memory. Programs are referenced by their ID number, which is set as part of the
project settings and can be view in the Flash Memory Files window. The
command displays the following window, from which a program number can be
entered.

 Reset Device
 The Reset command will restore all the AI-80’s hardware settings to their default
settings, along with executing the System Boot program.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 55

 Section 4 Reference Information

 This section contains more detailed reference information on the programming
language and software system of the AI-80.

 Section Contents:

• Programming Language
• Hardware Abstraction Layer
• System Software Overview
• Auto-Config Command Files
• Creating User Libraries
• Updating the AI-80 Software

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 57

 Section 4-1 Programming Language

 Introduction
 The AI-80 is entirely controlled by programs executing via a built-in command
interpreter. These programs manage the user interface (keypad and display),
along with controlling the hardware of the AI-80 during testing sequences. Since
the interpretive language is very simplistic and difficult to program, the A.I.
WorkBench software compiles high level language statements into the low level
interpretive language used by the AI-80. All the program files stored in the AI-
80’s non-volatile flash memory are in the interpretive format.

 Since even the system level programs are constructed using the A.I. WorkBench
compiler, the entire user interface of the AI-80 can be altered and customized for
a wide variety of applications. See section 4-3, System Software Overview for
more information on the operation of the system software programs.

 An important feature of the AI-80 interpreter is the ability to execute up to 4
processes independently. Each process can execute a different program, or a
single program can use up to four different processes. Each process has its own
local data space and operates completely independently from the other three.
Using multiple processes can greatly simplify complex tasks, by breaking a
program in logical operations that operate in exclusion of other operations.

 Language Syntax
 The basic unit of any program is a process. Programs are constructed from at
least one process, and may use up to four. If a program uses less than the
maximum number of processes, other independent programs can be executed
using the unused processes.

 Process Block
 Each process runs completely independently from each other; however, a
common data pool is available to be shared between the processes for inter-
process communications. If a program contains only one process, it is started
when the program is launched. When a program has multiple processes, then
only the process tagged as the “startup” process will be started. The others must
be started within the program. The “startup” process of a program is defined in
the programs Project Settings window.

 The syntax for a process is as follows:

 PROCESS <identifier>
 <statements>
 [EXIT PROCESS]

ADVENT INSTRUMENTS INC.

58 AI-80 CALLER ID SIGNAL GENERATOR

 END PROCESS

 When the program reaches the END PROCESS or EXIT PROCESS command,
that process is terminated. Process blocks can not be nested. If a program
contains more than one process, the PROCESS statements must follow one after
another.

 Function and Subroutine Blocks
 In addition to processes, functions and subroutines can be defined and called
from within a process. Both the subroutines and functions can be passed data for
processing. Subroutines do not return any data, while functions can return data
of either the numeric of string data type. Subroutines are initiated by the CALL
command while functions can be part of an expression. The syntax for the
function and subroutine blocks are as follows.

 FUNCTION <type> <identifier> [(<type> <identifier> ...
[, <type> <identifier>])]

 <statements>
 [EXIT FUNCTION [WITH <expression>]
 END FUNCTION [WITH <expression>]

 SUB <identifier> [(<type> <identifier> [, <type> <identifier>])]
 <statements>
 [EXIT SUB]
 END SUB

 Any user defined functions or subroutines must be declared outside of any
PROCESS block, and can not be nested (defined inside another). The identifier
chosen for any routine is global in scope and may not be used as constants or
variables anywhere else in the project.

 If parameters are passed to the functions and subroutines, a parameter list,
enclosed in () brackets must be specified. This parameter list indicates the data
type for each parameter, along with an unique identifier for the parameter. When
calling functions or subroutines, the calling statement’s parameter list is
compared to the parameter list in the FUNCTION or SUB statement. If the
number of parameters are different, or the data types do not match, an error will
be generated.

 The syntax for calling a subroutine is as follows:

 CALL <identifier> [(<identifier> [, <identifier>])]

 While functions are called inside expressions as:

 <identifier> [(<identifier> [, <identifier>])]

 It is important to note a few restrictions when working with functions and
parameters.

• When calling a function or subroutine, expressions can not be used
inside a parameter list. Only variables and constants can be passed.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 59

• All parameters are “read only” inside a function or subroutine. The
called routine can not modify any of the parameter values, as they
are treated as constants within the routine.

• Variable storage within routines does not support recursion. If a

function or subroutine is called in recursion, its variable contents will
be identical to that of the calling instance, and changing its value will
change it for all of the other instances.

• The GOSUB and RETURN statements are not allowed inside a

function or subroutine. These statements are only allowed inside a
PROCESS block.

 To return a value from a function, the WITH keyword is used after EXIT
FUNCTION or END FUNCTION. Any expression following is computed and its
results returned to the calling expression. The WITH keyword is optional, and if
missing, the function will return ether zero or an empty string, depending if the
function data type is numeric or string.

 An END SUB or END FUNCTION statement must be included to mark the end of
the subroutine. Once the program reaches this point, control is passed back to
the calling section. To exit prematurely from a routine, use the EXIT SUB or EXIT
FUNCTION statement.

 Variables and Constants
 Variables can be defined under various conditions by using the LOCAL, GLOBAL,
IMPORT, and EXPORT keywords.

 The primary difference between the LOCAL/GLOBAL and IMPORT/EXPORT
variables relates to the various processes that can be defined within a program.
All LOCAL and GLOBAL variables are localized to a specific process. As such,
each process has its own instance of a LOCAL or GLOBAL variable. To share
data between processes, the IMPORT and EXPORT keywords must be used to
define a variable. Export will allocated space for the variable in the inter-process
data pool, and also make that variable available to other programs, by adding it to
the program’s symbol table. A program’s symbol table may be added to another
program and be used to access all the variables defined with the EXPORT
keyword. The program that accesses an exported variable, must still define that
variable with the IMPORT keyword. IMPORT and EXPORT variables can only be
defined inside a PROCESS block, while LOCAL and GLOBAL variables can be
declared inside or outside PROCESS, FUNCTION, or SUB blocks.

 The use of LOCAL or GLOBAL to define a variable affects the scope of the
variable. When GLOBAL is used, that variable is known, and can be accessed in
any process, function, or subroutine within the project. Note that each process
will have its own instance of a global variable. A LOCAL variable has a more
restrictive scope. If defined inside a process, function, or subroutine that variable
is only know inside the block that defined it. As such, two LOCAL variables can
have the same name, provided they are declared and used inside different
process, function, or subroutine blocks. If a LOCAL variable is defined outside a
process, function, or subroutine block, then that variable’s scope is the current
source file. The variable will be known, and can be used, anywhere within the
source file that contains its definition.

ADVENT INSTRUMENTS INC.

60 AI-80 CALLER ID SIGNAL GENERATOR

 Note: As of release 1.8 of the A.I. WorkBench program, symbol table

importation is not supported. The EXPORT and IMPORT keywords can
still be used to share variables between processes in a single program.
However, the memory allocation is not performed automatically for
exported variables. As such, a register location must be manually
assigned between the range of 1 to 300. Note that string variables
require 16 consecutive data register locations, where as numeric
variables require only 1 data register.

 The syntax for defining a variable of the four different types is as follows. The
data type can be either NUMERIC or STRING, and each identifier used must be
unique. The declaration of a variable does not have to come before that variable
is used in the program. During the compiling process, an initial scan of the
program will identify all variables defined.

 LOCAL <type> <identifier>
 GLOBAL <type> <identifier>
 IMPORT <type> <identifier> < register >
 EXPORT <type> <identifier> <register>

 While variables can have three different scopes (within current block, within
current source file, within current project), the scope of a constant is either within
the current block, or within the current project. If a constant is defined inside a
process, function, or subroutine block, the constant is only known within that
block. Any reference to it in another process, function, or subroutine block will
cause an error. If defined outside all program blocks, the constant is known
throughout the project and can be used anywhere.

 The syntax for defining constants is shown below. The literal may be either a
numeric value or a string. If a string, it must be enclosed in quotation marks.

 CONST <identifier> = <literal>

 Note: All variables declared will be allocated storage space in the AI-80

internal registers regardless if they are used or not. Since the data space
(per process) is restricted to 300 registers, excessive variable
declarations can exhaust the supply very quickly. Each numeric variable
requires a single register, while a string variable requires sixteen
registers. Avoid declaring large numbers of variables inside subroutines
or functions. Instead, if creating a collection of related routines (a source
code module or library), use LOCAL variables with file scope that can be
shared between the various functions and subroutines.

 Program Statements
 All the programs are constructed from fifteen basic programming statements.
Many of these are similar in form to that of common high level programming
languages. Unique statements are included for controlling the execution of the
various processes. The basic program statements are:

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 61

• LET
• LOOP
• FOR-NEXT
• IF-THEN-ELSE
• SELECT-CASE
• CALL
• LABEL
• GOTO
• GOSUB
• RETURN
• LAUNCH
• STOP
• HALT
• RESUME
• ASM

 LET:
 The LET statement is used to compute the result of an expression and transfer
the value to a variable. The expression itself may contain variables, constants,
literals, or function calls. The data type of the left hand side variable must match
that of the expression. As such, numeric variables can only be assigned
numbers, and string variables can only be assigned strings. The syntax for an
expression is defined in the following pages.

 LET <variable> = <expression>

 LOOP:
 The LOOP statement can be used to repeat a series of statements a specified
number of times or an infinite number of times. The optional expression following
the LOOP keyword determines the number of times the statements will be
repeated. If an expression is present, it must evaluate to a numeric value. If no
expression is present, the statements will loop indefinitely. Optionally, the EXIT
LOOP statement will immediately exit the loop.

 LOOP [<expression>]
 <statements>
 [EXIT LOOP]
 END LOOP

 Note: Various commands are not allowed inside a LOOP statement.

They are GOTO, RETURN, EXIT SUB, and EXIT FUNCTION. In
situations where these statements are required, substitute the FOR-
NEXT statement for the LOOP statement.

 FOR-NEXT:
 The FOR-NEXT statement is an alternate method of repeating a block of
statements, instead of using the LOOP command. The specified variable and
expressions must be of a numeric data type. The variable is initially set to the
value of expression1. The variable is then compared to the value of expression2.
If less than or equal to, the following statements will be executed. At the NEXT
statement, the variable is incremented by either the value of 1 or, if expression3 is

ADVENT INSTRUMENTS INC.

62 AI-80 CALLER ID SIGNAL GENERATOR

present, its value. If the variable value is still less or equal to expression2, then
the statements between FOR and NEXT are repeated.

 FOR <variable> = <expression1> TO <expression2> [STEP ...
<expression3>]

 <statements>
 [EXIT FOR]
 NEXT <variable>

 If the EXIT FOR statement is encountered, the program will immediately jump to
the statement following the NEXT command, and continue execution from that
point.

 IF-THEN-ELSE:
 The IF statement can be used for conditional program control. The expression is
evaluated, and if true, the following statements are executed. A true expression
is one that evaluates to a numeric result, in which the result is not zero. An
expression that evaluates to zero is considered false. Optionally, the ELSE
statement can be used to define a block of statements that will be executed if the
expression is false. In all cases, the END IF command is required to mark the
end of the IF command.

 IF <expression> THEN
 <statements>
 [ELSE]
 <statements>
 END IF

 SELECT-CASE:
 The SELECT statement is an alternate way of conditional statement execution.
The result of the expression1 is compared to the expressions after the CASE
statements. If they are equal, the statements following the CASE keyword are
executed. The expressions to be compared can be either numeric or string
expressions, but must be consistent with each other (can not mix and match data
types). The keyword ELSE can be used instead of an expression, in which, the
following statements will always execute if none of the previous CASE
expressions were equal.

 SELECT <expression1>
 CASE <expression2> | ELSE
 <statements>
 ...

 [CASE <expression>
 <statements>]
 END SELECT

 Note: If CASE ELSE is used it should occur as the last CASE

statement before the END SELECT command, since it will always
evaluate as true.

 GOTO & LABEL:

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 63

 Unconditional program branching is performed with the GOTO command.
Program execution jumps to the first statement following the specified label.

 GOTO <identifier>
 LABEL <identifier>

 GOSUB & RETURN:
 Simple subroutines (without parameter passing), are called using the GOSUB
command. Program execution will jump to the specified label. To return to the
next statement following the GOSUB command, use the RETURN command.

 GOSUB <identifier>
 RETURN

 Subroutines using the GOSUB command may be nested. However, each
subroutine jump requires one register on the process’s stack in order to store the
return address. As the stack size is limited, the number of nested subroutine
calls is limited to a maximum of 40. If a RETURN command is encountered
before any GOSUB command, a stack fault will be detected by the AI-80 program
interpreter. This will cause an error and stop the current process.

 CALL:
 The CALL statement is used to execute a subroutine. Optional identifiers can be
passed to the subroutine. The number and type of any identifiers must match
that defined in the subroutine’s SUB block.

 CALL <identifier> [(<variable>|<literal> [, <variable>|<literal>]]

 LAUNCH & STOP & HALT & RESUME:
 The following statements are used to control the multiple processes that may be
executing. The LAUNCH statement is used to start additional processes, either
within the same program or within a new file (program). With the STOP, HALT,
and RESUME statements, processes can be terminated, halted or resumed
respectively. The keyword ME refers to the task number of currently executing
process.

 LAUNCH FILE <file ID number> WITH <task number> | ME
 LAUNCH PROCESS <identifier> WITH <task number>

 STOP <task number> | ME
 HALT <task number> | ME
 RESUME <task number>

 The resume statement will only function if the specified process is currently in the
halted state. If running or stopped, the resume statement will have no effect.

 At the end of the program, the compiler automatically adds the equivalent
statement “STOP ME”, which stops the current process. However, if the startup
process started other processes at some time during its execution, it is
responsible for terminating them. Otherwise the other processes will continue to
execute even after the startup process has ended.

 ASM:

ADVENT INSTRUMENTS INC.

64 AI-80 CALLER ID SIGNAL GENERATOR

 The ASM statement allows the AI-80 interpreter to be programmed directly in its
native language. The syntax is as follows:

 ASM {native language statements}

 Only under unusual conditions does a program require the ASM command. The
most common use is when a process wishes to directly access its own, or
another process’s register file. Programs can use the ASM command to examine
any process’s stack registers, program counter register, status register, and local
data space. The native language statements can also appear directly in
expressions. The following example reads the program counter of the current
process and transfer the result into a variable called PC.

 LET PC = {VN1}

 Built-in Subroutines and Functions
 A number of subroutines and functions are included in the basic language syntax.
Subroutines must be used with the CALL statement, while functions can be used
as part of any expression. However, the data type returned by the function, must
match the data type of the expression it is contained in.

 Built-in subroutines:

 WAIT (<expression>)
Expression must evaluate to a

numeric value. The subroutine
suspends the process for the specified
number of milliseconds. All other
processes will continue to execute.

 Built-in functions:

 VAL (<identifier>) Converts a
string to a numeric value. The string
must only contains the digits 0 to 9, or
the decimal point, and may be preceded
by the minus sign. If any other character
is present in the string, it will be
evaluated to zero.

 STR (< identifier >) Converts a

numeric to a string. The string output is
formatted in scientific notation ([-
]n[.n]e[-]n).

 ISTR (< identifier >) Converts a

numeric to an integer string. The string
output is an integer in the range of -2^23
to 2^23-1.

 INT (< identifier >) Returns the

integer value of a numeric value. The
passed value will be rounded to the
nearest integer value.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 65

 ABS (< identifier >) Returns the

absolute value of a numeric value.

 LEN (< identifier >) Returns the

number of characters in a string. The
returned value will range from 0 to 64.

 NOT (< identifier >) Returns the

logical NOT of the numeric value. Non-
zero values will return zero, while zero
values will return 1.

 NEG (< identifier >) Returns the

negative of the numeric value.

 LOG (< identifier >) Returns the

logarithm of the numeric value. The
base of the logarithm is 10.

 EXP (< identifier >) Returns the

result of the numeric value raised to the
tenth power.

 CHR (< identifier >) Converts an

ASCII value into a string of one
character length.

 ASC (<ident1>, <ident2 >) Returns

the ASCII character code of a single
character in the ident1 string at the
position of ident2. For example,
ASC(“Hello”,2) returns the ASCII code
for the second character, which is “e” or
101.

 MID (<ident1>, <ident2>) Returns

a single character string with the
character in the ident1 string at the
position of ident2. For example,
ASC(“Hello”,5) returns the fifth character
in “Hello”, which is “o”.

 Note: The built-in functions can only evaluate a single variable,

constant, or literal value. Expressions are not allowed inside the function
parameter list.

 Identifiers, Data Types, Variables, and other stuff
 The restrictions and syntax of the identifiers, types, and variables used within the
program statements, are defined here.

 <type> Data Type

ADVENT INSTRUMENTS INC.

66 AI-80 CALLER ID SIGNAL GENERATOR

 Data types can be one of two different kinds. They are either “NUMERIC” or
“STRING”. Numeric data types are represented as a 32 bit single precision
floating point value, while string data types can consist of a series of ASCII
characters ranging from zero to a maximum of 64 characters. The data type is
specified when defining variables, functions, and subroutines.

 <identifier> Identifier
 Identifiers are used to represent processes, functions, subroutine, variables, and
labels. They consist of ASCII strings that can contain letters or numbers, but
must start with a letter and cannot include any other characters except ‘_’. The
maximum length of an identifier is 32 characters.

 <literal> Literal
 A literal is an ASCII string representing a value in a format compatible with the
valid data types. For the numeric data type, it must be a number in either of the
following formats:
 decimal: [-]n[.n][E[-]n] i.e. -12.34e5
 hexadecimal: 0xr i.e. 0x1f7c
 Where n represents 1 or more digits between 0 and 9 and r represents
hexadecimal characters 0 to 9, and A to F. For the string data types, literals must
be enclosed in quotation marks as in the following example:
 string: “hello world.”
 The quotation marks are not part of the literal, but are needed to delimit it. If
quotation marks are to be part of the literal, add two consecutive quotation marks
to represent each quotation mark. For example, the literal:
 “he said, “”never!””, then left the room.” represents the string:
 he said, “never!”, then left the room.

 <statements> Statements
 Statements must begin with one of the following keywords:
 LET, LOOP, FOR, IF, SELECT, GOTO, LABEL,
 CALL, LAUNCH, STOP, HALT, RESUME, EXIT, and ASM

 <variable> Variable
 A variable is a type of identifier that has been defined with the LOCAL, GLOBAL,
EXPORT, IMPORT keywords in the program. Variables are used to represent
data in either a string or numeric representation.

 Variables are also used to represent the hardware resources of the AI-80. These
variables are included as part of the language and can be used anywhere a user
defined variable is used. Referred to as HOPs (Hardware Object Properties),
these variables are defined by the following structure:

 <object name>.<property>

 The HOP variables are mapped to hardware control registers within the AI-80 and
control all the hardware functions. They can be of either NUMERIC or STRING
data types. Some may have access restrictions, such as read only or write only.
As such, writing to a read only HOP will cause an error, as will reading from a
write only HOP. The next section (4-2) describes the usage and function of the
HOPs.

 <file ID number> Program File ID Number
 The file ID number can be either a variable or literal of a numeric data type. It
represents the file number of a process to be started with the LAUNCH
command.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 67

 <task number> Task or Process Number
 The task number must be a numeric literal. It represents the process number to
be either started, stopped, halted or resumed. The valid range is from 1 to 4.

 <expressions>
 The structure of an expression is defined as follows. It must have at least one
operand. Additional operands must be separated by operators. Depending on
the data type of the variables, some operators are not supported.

 <expression> == <operand> [<operator> <operand> ...]

 <operands> == <variables> | <constants> | <literals> | <function>

 where the operators are defined as:

 < operator > == “AND” | “OR”
 < operator > == “=“ | “<>“ | “<“ | “>“ | “=<“ | “>=“
 < operator > == “+” | “-”
 < operator > == “*” | “/”
 < operator > == "bAND" | "bXOR"

 For the string data type, only the following operators are valid:

 < operator > == “=“ | “<>“ | “+”

 Expressions are evaluated in a strict left to right fashion. Operator order of
precedence is NOT followed.

 The result of logical operators (AND, OR) and relational operators (=, <>, <, >,
=<, and >=) is always a numeric value of either true (1), or false (0).

 For string data types, only three operators can be used. The “+” operator
concatenates the two string operands, while the “=“ and “<>“ operators will return
a numeric true (1) or false (0).

 The two operators bAND and bXOR perform a bit-wise AND and XOR operation.
Accordingly the operands must be of the numeric type. Before the bit-wise
operation is performed the operands are converted to integer values.

 Note: Though, any non-zero value represents a true result, the logical

and relational operators will always return the value of 1.

 Program Limits and Language Restrictions
 The program limits are a function of the command interpreter residing in the AI-
80. The compiler will verify that these programming limits are not exceeded for
any program.

 Maximum code size: 65535 bytes
 Variable data space: 300 registers per local process
 300 registers for inter-process data space
 1 register used for each numeric variable
 16 registers used for each string variable

ADVENT INSTRUMENTS INC.

68 AI-80 CALLER ID SIGNAL GENERATOR

 Maximum # processes: 4 (at a given instant)
 Stack depth per process 40 registers

 Language restrictions are a result of both the compiler limitations and restrictions
in the AI-80 interpreter. Future software versions of the AI-80 and compiler may
remove these restrictions.

• User defined functions and subroutines are NOT re-entrant. The
variables defined within a function or subroutine are allocated permanent
space in the process’s data space. Re-entrant calls will use the same
data registers.

• Parameters passed to a user defined function or subroutine can be read

by the statements in the function or subroutine. However, the
parameters can NOT be written too. That is, they can not be modified by
the function or subroutine.

• Unary operators are not supported in expressions. Function calls must

be used instead.

• The maximum number of loops in the LOOP command is 223 -1.

 Note: The programming language is NOT case sensitive. As such,

keywords or identifiers can be entered in either upper case, lower case,
or a combination of both.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 69

 Section 4-2 Hardware Abstraction Layer

 The hardware abstraction layer defines how programs can control and manage
the hardware resources of the AI-80. While a program is running, it has full
control over the AI-80 and can manipulate the various tone generators, telephone
interface settings, display settings, along with monitoring key presses, timer
values, and host communications.

 Each hardware property is mapped to a built-in variable, that can be used in the
same manner as any user defined variable, which is declared with the LOCAL,
GLOBAL, EXPORT, and IMPORT statements. Writing a new value to the
hardware property immediately changes the hardware settings. Likewise, reading
from a hardware property returns its current status. The hardware properties are
group into logical collections and can be referenced in a program (as a variable)
in the following structure:

 <object name>.<property name>

 Referred to as HOPs (Hardware Object Properties), the variables are specified by
the object name, followed by a period, then the property name. As with user
defined variables, the HOP’s can represent two different data types. These being
numeric or string. Unlike user defined variables, some HOP’s have access
restrictions, in that they may be read only (like constants), or in some cases write
only.

 Since the HOP’s are treated as variables within the AI-80 programming language,
they can be used anywhere a user defined variable is used. The following
example shows how to set the ring generator frequency and level, and how to
monitor the hook switch status.

 Const True = 1
 Const False = 0

 Let Ring.Freq = 25.0 ;set ringing freq to 25 Hz
 Let Ring.Level = 60.0 ;set ringing level to 60 Vrms
 Let Ring.Enable = True ;turn on the ring generator

 Loop
 If TelInt.HookStatus = True Then
 Let Ring.Enable = False
 Exit Loop
 End If
 End Loop

 The above program sets the ringing generator frequency and level to 25 Hz and
60 Vrms respectively. After enabling the ringing generator, it waits (indefinitely)
for the hook switch status to detect an off-hook condition. At that time the
program disables the ringing generator and ends the program.

 The following tables describe in detail all the HOP’s accessible by the AI-80
programming language. A number of properties represent binary controls (active

ADVENT INSTRUMENTS INC.

70 AI-80 CALLER ID SIGNAL GENERATOR

or inactive). The active state is always enabled by writing a non-zero value (true),
while the inactive state is set by writing value of zero (false). Likewise, for reading
the properties, a non-zero value represents active, while zero represents inactive.

 RING Object
 The ring generator is controlled with the RING object. When enabled, it will
generate the specified level across the tip and ring leads of the active telephone
interface port. Even though the ring generator will turn off if the port enters an off-
hook state, the ENABLE property will continue to indicate active unless written to
with the value of zero.

 RING .FREQ type Numeric Access R/W Special

 Desc. This property controls the frequency of the ring generator. Its
value can be set to any value in the range of 10 Hz to 100
Hz.

 .LEVEL type Numeric Access R/W Special

 Desc. Sets the level of the ringing generator between the limits of 0
to 80 Vrms.

 .ENABLE type Numeric Access R/W Special

 Desc. Used to turn on or off the ringing generator. Setting to a non-
zero value (true) will enable the generator, while a value of
zero (false) will turn off the generator. The current status of
the ringing generator is returned by reading the property.
Enabling the ringing generator will turn off the tone A, tone B,
and noise generators (if active).

 TONEA Object
 The Tone A generator is a flexible signal source that can create either a single
frequency tone, FSK modulated tone, or amplitude modulated tone. Its output will
be present at the active telephone interface port in either the on-hook or off-hook
states. The ring generator has priority over the tone generator. As such, turning
on the ring generator will turn off the tone.

 TONEA .FREQ type Numeric Access R/W Special

 Desc. In single tone or AM mode of operation, this property controls
the output frequency. In FSK mode, it controls the frequency
of the space tone. Its valid range of values is from 20 Hz to
10,000 Hz.

 .LEVEL type Numeric Access R/W Special

 Desc. In single tone or AM mode of operation, this property controls
the output level. In FSK mode, it controls the level of the
space tone. Its valid range of values is from 0 Vrms to 4.0
Vrms.

 .PHASE type Numeric Access R/W Special

 Desc. The instantaneous phase angle of the tone generator can be
set or read with this property. The property represents the
phase angle in units of degrees between 0 and 360.

 .ENABLE type Numeric Access R/W Special

 Desc. The tone generator is enabled by writing a true value.
Likewise it is turned off by write a false value. If using ToneA
as an FSK modulator, the FSK properties must be set along
with the modulation mode before writing a true value,
otherwise the FSK modulator will not be enabled.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 71

 .FREQMARK type Numeric Access R/W Special

 Desc. When using the FSK modulator mode of operation, this
property sets the frequency of the mark tone. The value
must be in the range of 20.0 Hz to 10,000 Hz.

 .LEVELMARK type Numeric Access R/W Special

 Desc. When using the FSK modulator mode of operation, this
property sets the level of the mark tone. The value must be
in the range of 0 Vrms to 4.0 Vrms.

 .BITTIMESPACE type Numeric Access R/W Special

 Desc. When using the FSK modulator mode of operation, this
property sets the time duration of the space bits. The value
must be in the range of 0.00025 seconds to 1.0 seconds..

 .BITTIMEMARK type Numeric Access R/W Special

 Desc. When using the FSK modulator mode of operation, this
property sets the time duration of the mark bits. The value
must be in the range of 0.00025 seconds to 1.0 seconds..

 .FSKBITINDEX type Numeric Access R/W Special

 Desc. This property can be used to set or read the current pointer
value for the FSK data array. The FSK data sent is stored in
a buffer created with the DATA object. This property acts as
the index pointer to the buffer. While the FSK modulator is
active, this property will increment from its starting value to
the maximum number of bits in the buffer. Writing to this
property will change the index pointer and effect which data
bits are being generated.

 .FSKNUMBITS type Numeric Access Read Special

 Desc. The total number of FSK data bits stored in the data buffer is
returned by this property. Clearing the data buffer, or adding
bits to it is controlled by the DATA object. This property is
read only.

 .FSKCONTINUOUS type Numeric Access R/W Special

 Desc. Writing a true value to this property before the FSK modulator
is enabled, will cause the modulator to indefinitely repeat the
bit pattern contained in the buffer. Writing a false value,
disables this option

 .FSKHOLDCARRIER type Numeric Access R/W Special

 Desc. Writing a true value to this property will cause the tone
generator to maintain the frequency and level of the last FSK
bit generated indefinitely.

 .MODULATION type Numeric Access R/W Special

 Desc. The modulation mode of the tone generator is set by this
property. The valid modes are:

 0) Single Tone

 1) FSK Modulation

 2) Amplitude Modulation (Tone B is the modulating source)

 If in the AM mode, tone generator B will not produce any
output, except as the modulating source for tone A.

 .FSKACTIVE type Numeric Access Read Special

 Desc. The current state of the FSK modulator is returned in this
property as either true (on) or false (off). If the
FSKCONTINUOUS property is active, FSKACTIVE will return
true until the FSK modulator is turned off with the ENABLE
property. If the FSKHOLDCARRIER property is active,
FSKACTIVE will return true until the last bit has been sent.
After the last bit, this property will return false. However the
mark or space tone will still be on until turned off with the
ENABLE property.

ADVENT INSTRUMENTS INC.

72 AI-80 CALLER ID SIGNAL GENERATOR

 .AMDEPTH type Numeric Access R/W Special

 Desc. This property controls the amplitude modulation depth
between the limits of 0 to 100 percent. If the modulation
mode is set to AM (2), the ToneB generator is used as the
modulating frequency, while ToneA is the carrier frequency.
The level of ToneB is ignored, as the modulation depth is
controlled by the AMDEPTH property.

 TONEB Object
 Less flexible than tone generator A, ToneB can be used to create a single
frequency tone or act as the amplitude modulating source for ToneA, when in the
AM mode of operation. As with ToneA, ToneB’s output will be present at the
active telephone interface port in either the on-hook or off-hook states. The ring
generator has priority over the tone generator. As such, turning on the ring
generator will turn off the tone.

 TONEB .FREQ type Numeric Access R/W Special

 Desc. This property controls the output frequency. Its valid range of
values is from 20 Hz to 10,000 Hz.

 .LEVEL type Numeric Access R/W Special

 Desc. This property controls the output level. Its valid range of
values is from 0 Vrms to 4.0 Vrms

 .PHASE type Numeric Access R/W Special

 Desc. The instantaneous phase angle of the tone generator can be
set or read with this property. The property represents the
phase angle in units of degrees between 0 and 360.

 .ENABLE type Numeric Access R/W Special

 Desc. The tone generator is enabled by writing a true value.
Likewise it is turned off by write a false value. Note that if
ToneA’s modulation has been set to AM, then ToneB will not
produce any output, except to act as the modulation source
for ToneA.

 NOISE Object
 A broad band white noise generator is controlled with the following two properties.
The noise spectrum is flat over the bandwidth of 20 Hz to 10 kHz with the output
level representing the total noise voltage generated over the entire output
bandwidth. If enabled, the noise output will be present at the active telephone
interface port in either the on-hook or off-hook states. The ring generator has
priority over the noise generator. As such, turning on the ring generator will turn
off the noise.

 NOISE .LEVEL type Numeric Access R/W Special

 Desc. This property controls the output level. Its valid range of
values is from 0 Vrms to 2.0 Vrms

 .ENABLE type Numeric Access R/W Special

 Desc. The noise generator is enabled by writing a true value, and
disabled by writing a false value.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 73

 DATA Object
 The data properties are used to manipulate the FSK data bit buffer, which is used
for sending FSK modulated data. In the common application of sending Caller ID
information to a telephone, the following properties are used to compose a
message, which is sent with the FSK modulator built into tone generator A.

 DATA .CLEAR type Numeric Access Write Special

 Desc. Writing any value to the CLEAR property will clear the data
bit buffer. The number of bits in the buffer can be read at any
time with the TONEA.FSKNUMBITS property.

 .PARITY type Numeric Access R/W Special

 Desc. This property controls the parity setting of any characters or
strings added to the FSK bit buffer. The value range of
settings is:

 0) 8 data bits per character, no parity

 1) 7 data bits per character, odd parity

 2) 7 data bits per character, even parity

 The parity setting only effects data added to the buffer with
the ADDCHAR and ADDSTRING properties.

 .STOPBITS type Numeric Access R/W Special

 Desc. When bytes, characters, or strings are added to the FSK bit
buffer, they are encoded in a serial format which starts with a
start bit (space), followed by 8 data/parity bits (LSB first), and
ends with one for more stop bits (mark). The number of stop
bits added is set by this property, and can range from 1 to
100.

 .ADDMARK type Numeric Access Write Special

 Desc. Writing to this property adds the specified number of mark
bits to the FSK data bit buffer. The valid range is from 0 to
4096.

 .ADDSPACE type Numeric Access Write Special

 Desc. Writing to this property adds the specified number of space
bits to the FSK data bit buffer. The valid range is from 0 to
4096.

 .ADDALTERNATE type Numeric Access Write Special

 Desc. Writing to this property adds the specified number of bits to
the FSK data bit buffer, in an alternating space/mark pattern.
The first bit added is always a space. The valid range is from
0 to 4096.

 .ADDBYTE type Numeric Access Write Special

 Desc. Writing to this property adds a serially encoded byte value to
the FSK data buffer. The number of bits added to the buffer
will be 9 plus the STOPBITS setting. The value must be in
the range of 0 to 255. The PARITY setting has NO effect on
this property.

 .ADDCHAR type Numeric Access Write Special

 Desc. Similar to ADDBYTE, writing to this property adds a serially
encoded byte value to the FSK data buffer. The number of
bits added to the buffer will be 9 plus the STOPBITS setting.
The value must be in the range of 0 to 255. Unlike the
ADDBYTE property, the PARITY will effect the encoded bit
pattern.

 .ADDSTRING type String Access Write Special

 Desc. Similar to ADDCHAR, writing to this property adds a string of
characters to the FSK data buffer. Each character is encode
with a startbit, data bits (LSB first), and one or more stop bits.

ADVENT INSTRUMENTS INC.

74 AI-80 CALLER ID SIGNAL GENERATOR

The maximum number of characters that can be added is 64.
As with ADDCHAR, the PARITY setting effects the encoded
bit pattern.

 .ADDXSUM type Numeric Access Write Special

 Desc. Writing any value to this property will add the current
checksum value to the FSK data buffer. The number of bits
and format of the checksum depends on the XSUMTYPE
value.

 .XSUMENABLE type Numeric Access R/W Special

 Desc. This property enables or disables the checksum calculations.
As part of many Caller ID standards, a checksum value is
included in the Caller ID message. If enabled, the current
checksum value is updated anytime the ADDBYTE,
ADDCHAR, or ADDSTRING properties are written too. The
checksum is enabled by writing a true value. Likewise, it is
disabled by writing a false value.

 .XSUMTYPE type Numeric Access R/W Special

 Desc. This property controls the checksum method used to update
the checksum value. There are two settings:

 0) Inverted Modulus 256

 Conforms to Bellcore and ETSI FSK Caller ID standards

 1) 16 Bit CRC (x16+x12+x5+1)

 Conforms to NTT (Japan) FSK Caller ID standards

 .XSUMVALUE type Numeric Access R/W Special

 Desc. The current value of the checksum counter can be read or
modified by accessing this property. Depending on the
XSUMTYPE settings, this value will range from either 0 to
255 (8 bit), or 0 to 65535 (16 bit). Before creating a Caller ID
message, the XSUMVALUE should be set to zero.

 MFGEN Object
 The Multi-Frequency Generator (MFGEN) object implements a flexible and easy
to use DTMF tone generator. In addition to creating DTMF tones, it can be
modified to generate a wide variety of dual tone signals. Key to the generator is
an internal data table containing frequency, level, and duration information for up
to 20 arbitrary symbols. Each symbol can represent a single or dual tone signal
with independent frequency, level, and duration. Once the symbol table has been
set, tones can be generated one at a time, or as a string of tones. Before
enabling the MF generator, both ToneA and ToneB must be disabled, as the MF
generator takes a lower priority.

 MFGEN .INDEX type Numeric Access R/W Special

 Desc. This property is used to access the symbol data table. The
data table consists of 100 entries (5 per symbol with 20
symbols). Each symbol has two entries for frequencies (in
Hz), two for levels (in Vrms), and one for the tone duration (in
msec). To read or write to any entry, set the INDEX property
to the entry number, then use the VALUE property. See the
following table for the relationship between the INDEX
property and the symbol table entries. The valid range of the
INDEX property is from 1 to 100..

 .VALUE type Numeric Access R/W Special

 Desc. The VALUE property works in conjunction with the INDEX
property in reading and writing to the symbol data table.
Once the INDEX value has been set to the desired table
entry, the table entry value can be read or changed by
reading or writing to the VALUE property.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 75

 .LEVEL type Numeric Access R/W Special

 Desc. Writing to this property will set both tone levels, for symbols 1
to 16, to the specified value. This acts as a shortcut to
manually setting the symbol table levels to a common value.
The valid range for the level is from 0 to 4.0 Vrms

 .FREQADJUST type Numeric Access R/W Special

 Desc. The FREQADJUST property is a shortcut to setting the
frequency entries in the symbol table, when using standard
DTMF tones. Writing to the property will set the frequencies
for symbols 1 to 16 to the standard DTMF frequency, plus or
minus the specified adjustment in percent. The frequency
adjustment range is from -20 % to +20%.

 .ONTIME type Numeric Access R/W Special

 Desc. Writing to this property will set the tone duration, for symbols
1 to 16, to the specified value, in units of milliseconds. This
acts as a shortcut to manually setting the symbol table
duration’s to a common value.

 .OFFTIME type Numeric Access R/W Special

 Desc. The OFFTIME property controls the time interval between
generating multiple tone symbols. This only has an effect
when generating multiple tones by using the STRING
property. The units for this time interval is in milliseconds.

 .SYMBOL type Numeric Access Write Special

 Desc. Writing to this property, specifies the next symbol number to
be generated. The valid range for this property is from 1 to
20. To start the tone, write a true value to the ACTIVE
property.

 .STRING type String Access R/W Special

 Desc. The STRING property is used to generate a series of tone
symbols. The 20 different symbols correspond to a different
ASCII character (see table below). The time interval between
each symbol is set by the OFFTIME property.

 .ACTIVE type Numeric Access R/W Special

 Desc. This property is used to enable and disable the tone
generator. Writing a true value will start the generator with
either the last SYMBOL or last STRING value written to it.
Once the generator has finished, reading the ACTIVE
property will return false. While it is active, it will return true.
If either ToneA or ToneB is enabled, the MF generator can
not be started and will always return false.

 Symbol # Freq 1 Freq 2 Level 1 Level 2 On-Time
 1 1 2 3 4 5
 2 6 7 8 9 10
 -- -- -- -- -- --
 -- -- -- -- -- --
 20 96 97 98 99 100

 Symbol Data Table Index Values

 Symbol # ASCII Symbol # ASCII
 1 1 11 *
 2 2 12 #
 3 3 13 A
 4 4 14 B
 5 5 15 C
 6 6 16 D
 7 7 17 E
 8 8 18 F

ADVENT INSTRUMENTS INC.

76 AI-80 CALLER ID SIGNAL GENERATOR

 9 9 19 G
 10 0 20 H

 Relationship between Symbol Number and ASCII String Characters

 TELINT Object
 The TELINT properties control the AI-80’s telephone interface circuitry, such as
port selection, line polarity, and line impedance. The properties can also return
status information concerning the telephone hook switch status, and line balance
condition.

 TELINT .PORTB type Numeric Access R/W Special

 Desc. The active telephone interface port and CPE interface port is
set to B when writing a true value to the PORTB property.
Writing a false value sets the active port to A (default).

 .REVERSE type Numeric Access R/W Special

 Desc. Writing a true value to the REVERSE property reverse’s the
tip and ring leads within the active telephone interface port.
Likewise, writing a false value, returns the polarity to its
normal state.

 .OSI type Numeric Access R/W Special

 Desc. The OSI property is used to disconnect the active telephone
interface port from the front panel RJ-11 connector, by writing
a true to it. Setting the OSI property to a false value re-
connects the RJ-11 connector and restores the DC and AC
line conditions.

 .CURRENT type Numeric Access R/W Special

 Desc. The telephone interface delivers either a high (45 mA) or low
(26 mA) loop current to an off-hook telephone, depending on
the CURRENT property. Writing a true value sets it to the
high current mode, while a false value uses the low current
mode.

 .LINEIMP type Numeric Access R/W Special Option

 Desc. The LINEIMP property controls the AC telephone interface
source line impedance according to the following table.

 0) 600 Ohms

 1) 900 Ohms

 2) Complex Impedance (optional)

 .HOOKDETECT type Numeric Access Read Special

 Desc. The HOOKDETECT property is read only, can not be written
to. It returns the status of the active telephone interface hook
switch detect circuitry. If the port is off-hook, then
HOOKDETECT returns true. If in the on-hook state, then
HOOKDETECT returns false.

 .BALANCE type Numeric Access Read Special

 Desc. The BALANCE property is read only, and will return true if the
telephone interface becomes unbalanced (unequal DC loop
currents). Under normal operating conditions, this condition
should not occur and usually represents a hardware fault.

 .LENGTH type Numeric Access R/W Special Option

 Desc. If an optional hardware line length module is installed, the
LENGTH property is used to select 1 of 8 different line
lengths. Writing a value between 1 and 8 selects the
different line lengths. If this options is not installed, then
reading the LENGTH property will always return zero.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 77

 .MEASPOINT type Numeric Access R/W Special Option

 Desc. As with the LENGTH property, the MEASPOINT property is
used with the optional hardware line length module. If
installed, it selects the signal measuring point as follows:

 0) Measure signals before the line lengths (default)

 1) Measure signals after the line lengths (at the RJ-11
connector)

 If not installed, reading the MEASPOINT property always
returns zero.

 CPE Object
 The CPE object only contains one property (HOOKSWITCH), which is used to set
the CPE load to either the on-hook or off-hook state.

 CPE .HOOKSWITCH type Numeric Access R/W Special

 Desc. If writing a true value to the HOOKSWITCH property, the
CPE load will be set to the off-hook state. Likewise, writing a
false value sets the CPE load to the on-hook state.

 MEASURE Object
 The MEASURE properties are used to measure the broad band voltage levels at
either the active telephone interface, or the active CPE load.

 MEASURE .SOURCE type Numeric Access R/W Special

 Desc. The SOURCE property controls the measurement point for
the level meter. It can be set to one of three values.

 0) Measure signals at the telephone interface

 1) Measure signals at the CPE load port (normal)

 2) Measure signals at the CPE load port (ringing)

 For settings 0 and 1, the maximum signal level that can be
measured is 4 Vrms (before compression); however, when
using setting 2, levels of up to 100 Vrms can be measured at
the CPE load port.

 .SMOOTHING type Numeric Access R/W Special

 Desc. The SMOOTHING property controls the level meter’s settling
speed and level accuracy. If measuring low frequency
signals, such as ringing, a smoothing factor closer to unity
will improve measurement accuracy. For measuring voice
band frequencies, the smoothing factor can be lowered,
resulting in faster settling times. The following values can be
used as a guideline.

 0.9998 for measuring signals down to 10 Hz (+/- 0.1 dB)

 0.998 for measuring signals down to 100 Hz (+/- 0.1 dB)

 0.985 for measuring signals down to 500 Hz (+/- 0.1 dB)

 .LEVEL type Numeric Access Read Special

 Desc. The LEVEL property is read only, and returns the current AC
voltage reading of the level meter (in units of Vrms).

ADVENT INSTRUMENTS INC.

78 AI-80 CALLER ID SIGNAL GENERATOR

 DTMF Object
 The DTMF object controls a DTMF tone detector that can be used to detect and
measure any one of the 16 standard DTMF digits.

 DTMF .ENABLE type Numeric Access R/W Special

 Desc. Setting the ENABLE property to a true value turns on the
detector and starts the frequency and level measurements. If
no DTMF digits are expected, the detector can be turned off
by writing a false value to ENABLE.

 .SOURCE type Numeric Access R/W Special

 Desc. The SOURCE property selects the signal source for the
DTMF detector according to the following table:

 0) Measure from the active telephone interface port

 1) Measure from the active CPE load port

 .DIGIT type Numeric Access Read Special

 Desc. The DIGIT property is read only and returns the value of any
DTMF digit detected. If zero is read, no digit has been
detected. Non-zero values correspond to standard DTMF
digits as follows:

 1-9) DTMF digits 1 to 9 respectively

 10) DTMF digit 0

 11) DTMF digit *

 12) DTMF digit #

 13-16) DTMF digits A to D respectively

 The DIGIT property is not “debounced” and during DTMF
start up and shutdown the DIGIT property may give spurious
readings. As such, any program using the DIGIT value
should perform some basic debouncing to ensure the DTMF
digit is valid.

 .FREQTOL type Numeric Access R/W Special

 Desc. This property sets the DTMF acceptance tolerance for
frequency error. The valid range of values is between 0 and
2 %. If the frequency counters detects a DTMF digit within
this range, and the MINLEVEL property value is below both
the low and high group tone levels, the DIGIT property will be
set to the corresponding DTMF digit detected.

 .FREQTIME type Numeric Access R/W Special

 Desc. The FREQTIME property controls the integration time of the
frequency counters for the high and low group tones. This
value can range between 2 and 20 milliseconds. The default
time is 5 milliseconds. The longer the integration time, the
more stable the frequency measurement will be. Since many
telephone DTMF tones are produced digitally, the tones can
have large amounts of short term instability along with high
distortion levels. When using short integration times, this
results in readings that vary between successive
measurements. Longer integration times minimize the
instability and distortion effects and results in more stable
readings.

 .MINLEVEL type Numeric Access R/W Special

 Desc. This property sets the minimum low and high group tone level
limit. Unless a DTMF digit exceeds the minimum level the
DIGIT property will always return a zero value (no digit
detected). The minimum level is specified in Vrms.

 .LOWFREQ type Numeric Access Read Special

 Desc. The LOWFREQ property is read only and returns the
instantaneous frequency reading (in Hz) of the low group
tone.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 79

 .LOWLEVEL type Numeric Access Read Special

 Desc. The LOWLEVEL property is read only and returns the
instantaneous level reading (in Vrms) of the low group tone.

 .HIGHFREQ type Numeric Access Read Special

 Desc. The HIGHFREQ property is read only and returns the
instantaneous frequency reading (in Hz) of the high group
tone.

 .HIGHLEVEL type Numeric Access Read Special

 Desc. The HIGHLEVEL property is read only and returns the
instantaneous level reading (in Vrms) of the high group tone.

 FSK Object
 The FSK properties allows access to the optional AI-80 FSK decoding routines.
These routines can decode up to 700 bytes of information encoded in a bit serial
fashion. Note that the FSK decoder can not be active at the same time the DTMF
decoder is active. If both are set to active the DTMF decoder will take
precedence.

 As the FSK decoder is an optional component to the AI-80, it can only be
accessed if a software key is entered using the A.I.WorkBench software (vrs 1.6
and above).

 FSK .ACTIVE type Numeric Access R/W Special

 Desc. Setting this property to a non-zero value enables the FSK
decoding routines. Likewise, writing a value of zero turns off
the decoding routines. Note that the DTMF decoding
routines take precedence over the FSK decoding routines.
As such if DTMF.ENABLE is non-zero, then the FSK routines
will be disabled regardless of the value set to FSK.ACTIVE.
Also, if the required software key has not been programmed
into the AI-80, reading the ACTIVE property always returns
zero.

 .SOURCE type Numeric Access R/W Special

 Desc. The SOURCE property is used to specify the signal pickup
point for the FSK decoder. If zero, then the FSK decoder
uses the signals present at the telephone interface as its
input source. Otherwise, the signals present at the CPE
interface are used as the input source.

 .COUNT type Numeric Access R/W Special

 Desc. The COUNT property serves two purposes. First it returns
the number of bytes received by the FSK decoder. Second,
as up to 700 bytes are buffered by the FSK decoder, the
COUNT property represents the index to the buffer of the last
byte received. Once the 700 byte buffer has been filled, any
additional bytes received are lost. Writing a value to the
COUNT property sets the buffer index value for the FSK
decoder. Normally, this value should be set to zero before
enabling the FSK decoder.

 .LASTBYTE type Numeric Access R/W Special

 Desc. This property represents the value (0 to 255) of the last byte
received by the FSK decoder.

 .MARKTIME type Numeric Access R/W Special

 Desc. The MARKTIME property returns the amount of time that a
continuous mark signal is present. Once either a space
signal is detected, or the signal level drops below the
detection threshold, this property is set to zero. The value

ADVENT INSTRUMENTS INC.

80 AI-80 CALLER ID SIGNAL GENERATOR

returned is in units of seconds from 0 to a maximum of 100.

 .INDEX type Numeric Access R/W Special

 Desc. The INDEX property is used to access the buffer that stores
up to 700 bytes received by the FSK decoder. To access a
byte, set the INDEX property to a value between 1 and 700.
Then use the BYTEVALUE, BYTETIME, or BYTESTATUS
properties to read the information stored in the buffer.

 .BYTEVALUE type Numeric Access Read Special

 Desc. This property is read only, and returns the value of the byte
stored in the FSK decoder buffer pointed to by the INDEX
property. The value returned will be between 0 and 255.

 .BYTETIME type Numeric Access Read Special

 Desc. When the FSK decoder receives a byte, it stores the byte
value and the value of TIMER.FAST to a buffer. This
property is used to return the timer value for the byte stored
in the buffer pointed to by the INDEX property. The value
returned will be between 0 and 100 seconds.

 .BYTESTATUS type Numeric Access Read Special

 Desc. The BYTESTATUS property returns the status flags stored
with each byte by the FSK decoder. The status flags are
defined as follows:

 bit 0: Received Stopbit Value (1=mark, 0=space)

 bits 1 to 7: (Reserved, will read as zero)

 TIMER Object
 The TIMER properties are used for generic time keeping functions along with
detecting transitions in the telephone interface hook switch detector.

 TIMER .SLOW type Numeric Access R/W Special

 Desc. The SLOW property returns a value in seconds that
automatically updates itself at a rate of once per millisecond.
Its value will increment from zero to a reading of 10000
seconds, at which point it saturates. It can be written to any
value between 0 and 10000, at which point it will start to
increment from the new setting.

 .FAST type Numeric Access R/W Special

 Desc. The FAST property is similar in function to the SLOW timer,
except that the FAST timer updates itself once every 25.6
microseconds. The quicker update rate gives better timing
resolution than the SLOW timer. The maximum value for the
FAST timer is 100 seconds.

 .ONHOOK type Numeric Access R/W Special

 Desc. The ONHOOK property will be automatically updated with the
SLOW timer value whenever the active port’s telephone
interface hook switch detector records an off-hook to on-hook
transition.

 .OFFHOOK type Numeric Access R/W Special

 Desc. The OFFHOOK property will be automatically updated with
the SLOW timer value whenever the active port’s telephone
interface hook switch detector records an on-hook to off-hook
transition.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 81

 DISPLAY Object
 The DISPLAY properties control the AI-80 front panel display indicators. All of the
properties are write only (can not be read) and allow programs to change the 4
digit 7 segment display and the individual LED’s above the start, pause, and stop
keys.

 DISPLAY .NUM type Numeric Access Write Special

 Desc. Writing to the NUM property displays the specified number on
the 7 segment display. The range of numbers that can be
displayed depends on the decimal point setting (DP
property), as follows:

 DP=0 (display integers) Range = -999 to 9999

 DP=1 (display tenths) Range = -99.9 to 999.9

 DP=2 (display hundredths) Range = -9.99 to 99.99

 DP=3 (display thousandths) Range = -0.999 to 9.999

 Writing any values outside the valid range cause the display
to show four consecutive dashes “- - - -”, which represent an
out of range condition.

 .DP type Numeric Access Write Special

 Desc. The DP property sets the decimal point position to one of four
possible settings. The range of values that can be displayed
depend on the DP value, as shown above.

 .LEDON type Numeric Access Write Special

 Desc. The LEDON property can is used to turn on the LED
associated with either the start(1) , pause(2) , or stop(3) key.
The value written to this property must be between 1 and 3.

 .LEDOFF type Numeric Access Write Special

 Desc. The LEDOFF property can is used to turn off the LED
associated with either the start(1) , pause(2) , or stop(3) key.
The value written to this property must be between 1 and 3.

 .BLINK type Numeric Access Write Special

 Desc. The 7 segment display can be flashed at various rates by
using the BLINK property. The property value specifies the
blink rate (in units of milliseconds) for the display. To turn off
the flashing, a value of zero is written to the BLINK property.
The maximum flash interval is 5000 milliseconds.

 .SEGMENTA type Numeric Access Write Special

 Desc. The SEGMENTA property can be used to turn on and off the
LED display segments that make up the right most digit.
Each of the 7 segments, plus decimal point, is assigned a bit
in a 8 bit (0 to 255) value. If the bit is set to 1, the
corresponding LED segment is turned on.

 . SEGMENTB type Numeric Access Write Special

 Desc. Similar to the SEGMENTA property, this value controls the
second right most digit.

 . SEGMENTC type Numeric Access Write Special

 Desc. Similar to the SEGMENTA property, this value controls the
second left most digit.

 . SEGMENTD type Numeric Access Write Special

 Desc. Similar to the SEGMENTA property, this value controls the
left most digit.

ADVENT INSTRUMENTS INC.

82 AI-80 CALLER ID SIGNAL GENERATOR

 KEY Object
 The KEY properties return the state of the AI-80 front panel keys. They are read
only and can not be written to.

 KEY .START type Numeric Access Read Special

 Desc. The START property returns the number of seconds the front
panel Start key has been held down. Once the key is
pressed, the START property will being incrementing from
zero to a maximum of 100 seconds. If the key is released,
the START property immediately returns to a value of zero.
The time resolution of the value is approximately 20
milliseconds.

 .PAUSE type Numeric Access Read Special

 Desc. Similar in function as the START property, but returns the
amount of time the Pause key has been pressed.

 .STOP type Numeric Access Read Special

 Desc. Similar in function as the START property, but returns the
amount of time the Stop key has been pressed.

 .UP type Numeric Access Read Special

 Desc. Similar in function as the START property, but returns the
amount of time the Up key has been pressed.

 .DOWN type Numeric Access Read Special

 Desc. Similar in function as the START property, but returns the
amount of time the Down key has been pressed.

 SPEAKER Object
 The SPEAKER properties control the built-in speaker within the AI-80. This can
be useful for monitoring the tones being generated by the AI-80 or from any CPE
connected to the AI-80.

 SPEAKER .VOLUME type Numeric Access R/W Special

 Desc. The overall volume level of the speaker can be set to one of
four different volume settings by writing to the VOLUME
property. The range of valid values is from 1 (quietest) to 4
(loudest).

 . BEEPENABLE type Numeric Access R/W Special

 Desc. Simple beeps can be created by writing a true value into the
BEEPENABLE property. The duration and frequency of the
beep is set by the BEEPTIME and BEEPFREQ properties.
Once a beep has been started (by writing true to
BEEPENABLE), it can be stopped anytime by writing false to
BEEPENABLE, or will automatically stop once the
programmed duration has been reached.

 .BEEPTIME type Numeric Access R/W Special

 Desc. The BEEPTIME property sets the duration of the beeps. The
acceptable range of values is from 1 to 10,000 milliseconds.

 .BEEPFREQ type Numeric Access R/W Special

 Desc. The BEEPFREQ property sets the frequency of the beeps.
The acceptable range of values is from 100 to 5000 Hz.

 . SIGNALGAIN type Numeric Access R/W Special

 Desc. In order to monitor the signals generated by the AI-80
internally with the speaker, the SIGNALGAIN property can be
set to a non-zero value. The higher the value, the higher the
signal gain. The valid range for this property is from 0 (off) to

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 83

10.0.

 . TELINTGAIN type Numeric Access R/W Special

 Desc. Similar to the SIGNALGAIN property, the TELINTGAIN
property can be used to monitor signals with the speaker, the
signals present at the active telephone interface port. This
represents the signals generated by the AI-80 in addition to
those generated by any connected device. The valid range
for this property is from 0 (off) to 10.0.

 . CPEGAIN type Numeric Access R/W Special

 Desc. Similar to the SIGNALGAIN property, the CPEGAIN property
can be used to monitor with the speaker, the signals present
at the active CPE load port. The valid range for this property
is from 0 (off) to 10.0.

 The high volume settings and high gain settings may be needed to effectively
monitor faint or low level signals. However, the presence of strong or high level
signals may cause excessive distortion from the speaker. In this case, the gain
and/or volume settings should be decreased.

 COMM Object
 The COMM object’s properties control the AI-80’s serial RS-232 interface. While
normally connected to a host computer for downloading and developing
programs, the serial port can used by programs for communicating to other
devices, such as serial printers. Note that the AI-80’s serial interface is fixed to
communicate with other devices using 8 bits, no parity, 1 stop bit. The baud rate
is programmable, but limiting the other common serial settings minimizes
possible troubleshooting.

 COMM .BAUD type Numeric Access Write Special

 Desc. The BAUD property sets the serial interface’s baud rate to 1
of 5 different values according the following table:

 0) 9600 baud (default setting on power up)

 1) 19200 baud

 2) 38400 baud

 3) 57600 baud

 4) 115200 baud

 Note that the AI-80 will automatically reset the baud rate to its
default setting (9600) when a break signal is detected. As
such to ensure communication with a host system, the host
should initially send a break signal. Once communications
have been established at 9600 baud, the rate can be
changed to other values.

 .RXCOUNT type Numeric Access Read Special

 Desc. The RXCOUNT property is a read only value that reflects the
number of data bytes present in the serial receive buffer.
Under normal operation, system monitoring software within
the AI-80 will always empty the receive buffer before any
programs detect data present.

 .GETBYTE type Numeric Access Read Special

 Desc. The GETBYTE property returns the next byte available from
the serial receive buffer and decrements the RXCOUNT
property. If no bytes are contained within the receive buffer,
reading GETBYTE will return a copy of the last byte received.

 .SENDBYTE type Numeric Access Write Special

 Desc. The SENDBYTE property sends a single byte value to the
serial transmit buffer. Any bytes in the transmit buffer will
automatically be transmitted at the selected baud rate.
Before writing to the SENDBYTE property, the TXFREE

ADVENT INSTRUMENTS INC.

84 AI-80 CALLER ID SIGNAL GENERATOR

property should be checked to ensure there is enough space
in the transmit buffer.

 .SENDSTRING type String Access Write Special

 Desc. Similar to the SENDBYTE property, the SENDSTRING
property is used to send a string of ASCII data to the serial
transmit buffer. Before writing to the SENDSTRING property,
the TXFREE property should be checked to ensure there is
enough space in the transmit buffer

 .RXSTATUS type Numeric Access Read Special

 Desc. The RXSTATUS property returns the status of the receive
serial buffer. The values it returns and their meanings are as
follows:

 0) No error detected

 1) Parity or framing errors detected

 2) Overflow in the receive data buffer

 3) Break condition detected

 Only the highest condition code is returned, and reading the
RXSTATUS property will zero the property value until the next
error condition is detected.

 .TXFREE type Numeric Access Read Special

 Desc. The TXFREE property returns the number of bytes unused in
the serial transmit buffer. If TXFREE returns zero, then no
more data should be sent until the buffer clears itself.

 .CTS type Numeric Access Write Special

 Desc. The Clear to Send (CTS) output signal can be set active by
writing a true value to the CTS property. Likewise, writing a
false value to the CTS property will deactivate the CTS output
signal.

 .RTS type Numeric Access Read Special

 Desc. The RTS property returns the state of the Request to Send
(RTS) input signal. If the RTS signal is active, the RTS
property will return true. If the signal is inactive, the RTS
property returns false.

 FILE Object
 The FILE properties provide limited access the AI-80 file system. They can be
used to determine whether or not certain files exist within the flash memory.

 FILE .IDLOW type Numeric Access R/W Special

 Desc. The IDLOW property is used to specify the low 16 bits of the
32 bit file ID code being sought. The lower 16 bits are used
to represent the file number, while the upper 16 bits represent
the file type.

 .IDHIGH type Numeric Access R/W Special

 Desc. The IDHIGH property is used to specify the high 16 bits of the
32 bit file ID code being sought. The high 16 bits are used to
represent the file type, while the lower 16 bits represent the
file number.

 .EXIST type Numeric Access Read Special

 Desc. The EXIST property is read only, and returns either true or
false depending on whether the file ID (specified by IDLOW
and IDHIGH) exist. If the file exists in the flash memory, the
EXIST property will return true.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 85

 SYSTEM Object
 The SYSTEM properties return various version strings along with what hardware
options have been installed in the AI-80. All the properties are read only.

 SYSTEM .UNITID type String Access Read Special

 Desc. The UNITID property returns an ASCII character string that
represents the AI-80 ID code.

 .SOFTID type String Access Read Special

 Desc. The SOFTID property returns an ASCII character string that
contains the primary software version number.

 .HALID type String Access Read Special

 Desc. The HALID property returns an ASCII character string that
contains the hardware abstraction layer version number.

 .FFSID type String Access Read Special

 Desc. The FFSID property returns an ASCII character string that
contains the flash memory file system version number.

 .VTPID type String Access Read Special

 Desc. The VTPID property returns an ASCII character string that
contains the virtual interpretive processor version number.

 .OPTIONS type Numeric Access Read Special

 Desc. The OPTIONS property returns a numeric value that
represents what hardware options are installed in the AI-80.
Each option is represented by a binary bit. If the specific
option’s bit is set in the returned value, that option is present.

 The presently assigned option bits are:

 Bit 0) Complex & External Line Impedances

 Bit 1) Telephone Line Length Module

 Bit 2) n/u

 Bit 3) I/O Expansion Module

 .HALTCMDS type Numeric Access R/We Special Restrict.

 Desc. The HALTCMDS property is used to prevent the AI-80 from
receiving any RS-232 data sent from the PC. Writing a non-
zero value stops the AI-80 from listening to any commands
sent from the PC. All the bytes received from the PC are
stored in the received data buffer, which is accessed via the
COMM.GETBYTE property. This mode allows the AI-80
programs to communicate with external devices over the RS-
232 port without the AI-80 attempting to interpret the data as
commands. Note that if a line break condition is detected,
this property is returned to its default value of zero. As such,
normal communications can be restored by asserting a line
break condition.

 IO Object
 The optional IO Module extends the hardware capabilities of the AI-80, by adding
a number of features. These include digital input and output signals, audio signal
I/O, and DC voltage measurement. Programming control over the IO module is
performed in the same manner as the other AI-80 hardware resources. The “IO”
object represents all the hardware properties associated with the IO Module.

 Programs that make use of the IO object, should check that the IO Module is
installed in the AI-80 before accessing its properties. This is done by reading the
“DEVICEID” property. If it returns a non-zero value, the IO Module is installed.

ADVENT INSTRUMENTS INC.

86 AI-80 CALLER ID SIGNAL GENERATOR

 IO .DEVICEID type Numeric Access Read Special

 Desc. This read-only property returns an ID number for the IO
Module. Normally this value is 802. However, if the IO
Module is not installed in an AI-80, reading this value will
return zero. All programs should first read the device ID
before accessing the IO Module to determine that the IO
Module is present.

 .VERSION type Numeric Access Read Special

 Desc. The IO Module version property returns a single number that
represents its revision code. Currently this value is fixed at 1;
however, future enhancements may return a different value.

 .NAME type String Access Read Special

 Desc. This property returns a string representing the name of the IO
Module.

 .SERIAL type String Access Read Special

 Desc. The SERIAL property is the serial number for the IO Module.
Each serial number string is unique and this is a read-only
property.

 .DOUT type Numeric Access R/W Special

 Desc. The eight digital output signals are controlled by the DOUT
property. Writing a value between the limits of 0 and 255 will
set the output signals to eight a high or low state depending
on their bit position. Bit 0 in the written value controls the
logic state of output 1, while bit 1 controls output 2, and so
on. If the bit is set, the output logic level will be a one, or high
state. Likewise, for a clear bit, the output logic level will be
zero, or low state. Reading the DOUT property returns the
last value written.

 .DIN type Numeric Access Read Special

 Desc. Reading the DIN property returns the logic level present at
the eight digital input signals. Each digital input is
represented by one of eight different bit positions in the
returned value. Bit 0 represents input 1, bit 1 represents
input 2, and so on. If the input signal is at a logic one (high
state), its bit value will be set. The value returned by DIN will
always range between 0 and 255.

 .BITSET type Numeric Access Write Special

 Desc. BITSET can be used to change any digital output signal, or
digital in/out signal to a logic one, or high state. Writing a
value of 1 to 8 will set digital output signal 1 to 8 to a logic
one level. Writing a value of 9 to 15 will force digital in/out
signals 1 to 7 to be an output with a logic level of one (high
state). Note that digital in/out signals 1 and 2 can also be
used for asynchronous serial communications. If enabled
(IO.COMMBAUD <> 0), then the BITSET property will have
no effect on these two digital in/out signals.

 .BITCLEAR type Numeric Access Write Special

 Desc. Similar to the BITSET property, BITCLEAR will change any
digital output signal, or digital in/out signal to a logic zero, or
low state. Values 1 to 8 represent digital outputs 1 to 8, while
values 9 to 15 represent digital in/out signals 1 to 7. As with
the BITSET property, if the asynchronous serial
communication function is enabled (IO.COMMBAUD <> 0),
then this property has no effect on digital in/out signals 1 and
2.

 .BITINPUT type Numeric Access R/W Special

 Desc. This property performs two functions. First it will force a
digital in/out signal to be an input, if specified. Second, it
determines which bit is read by the GETBIT property. Writing
a value of 1 to 8 specifies that the GETBIT property will return

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 87

the logic state of digital input 1 to 8. A value of 9 to 15
returns the logic state of the digital in/out signal 1 to 7.
Finally, a value of 17 to 24 causes GETBIT to return the state
of the digital output signal 1 to 8. If the asynchronous serial
communication function is enabled (IO.COMMBAUD <> 0),
then this property has no effect on digital in/out signals 1 and
2.

 .GETBIT type Numeric Access Read Special

 Desc. GETBIT is a read-only property that returns the logic state
(one or zero) of the digital signal specified by the BITINPUT
property. BITINPUT values or 1 to 8 return the digital input
signal 1 to 8 state, 9 to 15 return the digital in/out signal 1 to
7 state, while values 17 to 24 return the digital output signal 1
to 8 state.

 .AINCHANNEL type Numeric Access R/W Special

 Desc. Four of the digital input signals can also be used as analog
input channels for DC voltage measurement. The
AINCHANNEL property specifies which digital input signal’s
DC voltage will be measured when reading AINLEVEL. The
channel value can range from 1 to 4, representing digital
input signals 5 to 8 respectively.

 .AINLEVEL type Numeric Access Read Special

 Desc. This property returns the DC voltage present at digital input
signals 5 to 8, as specified by the AINCHANNEL property.
The measurement range for the DC voltage is from -10 volts
to + 10 volts. The IO Module performs continuous DC
voltage measurements on the selected channel at a rate of
once every 1.1 msec. Reading this property returns the
results of the last measurement.

 .AINCOMPARE type Numeric Access Read Special

 Desc. In addition to digital inputs, signals 0 and 1 can be used as
an analog voltage comparator. If the voltage level at digital
input 0 is higher than the voltage at digital input 1, then
reading AINCOMPARE will return TRUE (-1). Otherwise, it
returns FALSE (0). The voltages present at digital inputs 0
and 1 must be between 0 and 5 volts.

 .DCLEVEL type Numeric Access Read Special

 Desc. This property returns the measured DC voltage present at the
rear banana jacks of the AI-80. The voltage measured is
returned in units of volts and can range from -200 to +200. It
is important to wait until the DC measurement is complete
before reading this property. If the measurement is still in
progress, the returned value may be inaccurate.

 .DCTRIGGER type Numeric Access R/W Special

 Desc. The DCTRIGGER property is used to control and monitor the
progress of the DC voltage measurement. Writing a non-
zero value to this property will start a DC measurement cycle.
The time required to complete the measurement is controlled
by the DCTIME property. During the measurement cycle,
reading DCTRIGGER will return the value of 1. Once the
measurement is complete, this property will return a value of
zero. The normal procedure for performing a measurement
is to write to this property with a value of 1. Then wait until it
returns zero. At that time the DCLEVEL property can be read
with the measurement results.

 .DCTIME type Numeric Access R/W Special

 Desc. This property specifies DC measurement cycle duration in
units of seconds. The valid range of values is from 0.001 to
1.0 seconds, with a default value of 0.1 seconds. Longer
measurement times are useful in rejecting AC signals, such
as 50/60 Hz hum noise. If 50/60 Hz power line hum is
causing measurement instability, the DCTIME value should
be increased in multiples of the power line cycle time (20

ADVENT INSTRUMENTS INC.

88 AI-80 CALLER ID SIGNAL GENERATOR

msec for 50 Hz, and 16.7 msec for 60 Hz).

 .AUDIOOUT type Numeric Access R/W Special

 Desc. The AUDIOOUT property controls the function of the BNC
Audio Output. Its value can range from 0 to 5 with the
following functionality:

 0) Off. Turns off the BNC Audio Output.

 1) Signal Generator Monitor. The BNC Audio Output
provides a monitor for the signals being sent to the telephone
interface. The level at the BNC output is 6 dB less than the
level at the telephone interface port (unterminated). For
example, if ToneB is generating a 1 Vrms tone, the level at
the BNC output will be 0.5 Vrms.

 2) Telephone Interface Monitor. In this setting the BNC
output reflects the signal present on the tip and ring leads of
the telephone interface. Both the signals generated by the
AI-80 and any signals generated by a connected CPE will be
present at the BNC output. Like mode 1 above, the signal
level at the BNC output is 6 dB less than the level at the
telephone interface port.

 3) CPE Load Monitor. The BNC output monitors the signals
present at the CPE Load tip and ring leads. The output level
is 6 dB less than the level at the tip and ring leads.

 4) Speaker Output Monitor. In this mode, the BNC Audio
Output monitors the signals routed to the AI-80’s speaker.
The speaker signals can be a combination of the tone
generators, telephone interface, and CPE load signals, as
controlled by the SPEAKER properties.

 5) Signal Generator Output. Similar to mode 1 above, the
output of the signal generated is routed to the BNC output.
However, the signal is NOT route to the telephone interface
as well. The TONEA, TONEB, and MFGEN tones are only
present at the BNC Audio Output connector. In this mode,
the signal levels are as specified. For example, if the TONEB
level is specified at 1 Vrms, the level at the BNC output will
be 1 Vrms. Note the maximum output level at the BNC
connector is 2 Vrms.

 .AUDIOIN type Numeric Access R/W Special

 Desc. The AUDIOIN property is used to enable measurements of
the signals fed into the BNC Audio Input. Writing a TRUE
value (non-zero) modifies the SOURCE property of the
MEASURE and DTMF objects, such that if the SOURCE
value is set to 1, the signal source will be the BNC input as
opposed to the CPE Load. The following table summarizes
the possible signal sources for measurement:

 Signal Source SOURCE prop. AUDIOIN prop.

 1) Telephone Interface 0 X (don’t care)

 2) CPE Load 1 0 (False)

 3) CPE Load (low gain) 2 0 (False)

 4) Audio BNC Input 1 1 (True)

 The maximum input level that can be applied to the BNC
input is 2 Vrms. Note that the input is DC coupled.

 .AUDIOMIX type Numeric Access R/W Special

 Desc. Audio signals present at the BNC input can be mixed with the
tone generator output and routed to the telephone interface.
When the AUDIOMIX property is set to TRUE (non-zero),
signals applied to the BNC input are increased in gain by 6
dB and routed to the telephone interface. Any tones being
generated are mixed with the signals from the BNC input.
Setting the property to FALSE (zero), disables the mixing
function.

 .PMODE type Numeric Access R/W Special

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 89

 Desc. The PMODE and PTIME properties can be used to measure
the duration of digital pulses present at digital in/out 7. To
use this function, in/out pin 7 must be set as an input with the
BITINPUT property. Writing to the PMODE property starts a
timing measurement in one of the following modes:

 0) Off - Turns off pulse timing mode

 1) +ve Pulse - Measures the time between the first rising
edge and falling edge.

 2) -ve Pulse - Measures the time between the first falling
edge and rising edge

 3) Rising Edges - Measures the time between the first rising
edge and second rising edge.

 4) Falling Edges - Measures the time between the first falling
edge and second falling edge.

 The results and status of the measurement can be read by
the PTIME property.

 .PTIME type Numeric Access Read Special

 Desc. Working with the PMODE property, reading PTIME returns
the pulse timing measurement in seconds. After writing to
PMODE with a value from 1 to 4, the IO Module will start a
pulse timing measurement. While the measurement is taking
place, PTIME returns the value of zero. When the
measurement is complete, PTIME will return a non-zero
value. The ranging in timing is from 0.1 msec to 100
seconds with an accuracy of +/- 0.2 msec.

 Note, if a pulse time is measured to be less than 0.1 msec,
then PTIME will return a value of 0 even though the
measurement is complete. As such, it is always prudent to
employ a time-out such that programs do not wait endlessly
for a non-zero value.

 .PULSEMODE type Numeric Access R/W Special

 Desc. The PULSEMODE property is used to control a number of
pulse counting and pulse generation features. By writing a
value from 0 to 5, the following modes can be enabled:

 0) Off - No pulse counting or pulse generation active

 1) Pulse Counting (free run) - In this mode, a 24 bit counter
is incremented at every rising edge detected on digital in/out
pin 6. The value of the 24 bit counter can be read or written
to by accessing the PULSECOUNT property. The maximum
pulse frequency applied to digital in/out pin 6 should not
exceed 1 MHz.

 2) Pulse Counting (gated) - Similar to the free run pulse
counting mode; however, the pulses are only counted for a
specified duration. When in this mode, writing to the
PULSEGATE property clears the PULSECOUNT value and
counts the number of rising edges at digital in/out 6 for the
duration specified by PULSEGATE. Once the gating time
has expired the PULSECOUNT value is frozen.

 3) Pulse Generation (single shot) - In this mode of operation,
the timer output pin generates a single positive going pulse of
a specified duration by writing to the PULSEDURATION
property.

 4) Pulse Generation (continuous) - Enabling this mode
causes the digital timer output pin to generate a continuous
square wave with a frequency defined by the PULSEFREQ
property.

 5) Pulse Width Modulator - Two independent pulse width
modulators can be enabled for generating analog output
values. Each PWM has a resolution of 10 bits with a
repetition rate of 1.8 kHz. The digital timer output is the
source for the first PWM channel, while digital in/out pin 4 is
the source for the second PWM channel. If a low pass filter
is applied to the PWM output, the result is an analog output
voltage between 0 and 5 Volts, with 10 bits of resolution.

ADVENT INSTRUMENTS INC.

90 AI-80 CALLER ID SIGNAL GENERATOR

 Note: to use the second PWM channel, the digital in/out pin
4 must be configured as an output with either the SETBIT or
CLEARBIT properties.

 Note: for the pulse counting modes (1 and 2), the digital
in/out pin 6 must be set to be an input signal by using the
BITINPUT property.

 .PULSECOUNT type Numeric Access R/W Special

 Desc. Used in the pulse counting modes (1 - free run, 2 - gated),
reading this property returns the number of counts (rising
edge) detected at digital input pin 6. The counter is 24 bits
wide representing values from 0 to approximately 16.7
million.

 .PULSEGATE type Numeric Access R/W Special

 Desc. The PULSEGATE property is used to specify the gating time
for the pulse counter. When PULSEMODE is set to 2, writing
to this property will clear the pulse counter and allow counting
of the rising edges at digital in/out 6 for the time specified.
The gate time can range from 0.001 to 100 sec. The
PULSEGATE value is decremented to zero while the pulse
counting gate is open. As such, a program can write a value
to the PULSEGATE property and then wait till the
PULSEGATE value reaches zero. At that time the pulse
counting is completed and the PULSECOUNT property can
be read. The accuracy of the pulse gate value is +/- 0.2
msec.

 .PULSEDURATION type Numeric Access R/W Special

 Desc. This property is used to specify the duration of a single-shot
positive pulse generated at the digital timer output pin. If the
PULSEMODE property is set to 3, then writing a value
between 0.001 and 100 seconds generates a pulse of that
duration. Reading the PULSEDURATION property returns
the amount of time left until the pulse is complete. As such,
to generate a pulse of 100 msec, write the value of 0.1 to
PULSEDURATION and then continuously read
PULSEDURATION until the value returned is zero. That will
mark the end of the pulse. The accuracy of the pulse
generated is +/- 0.2 msec.

 .PULSEFREQ type Numeric Access R/W Special

 Desc. The PULSEFREQ property is used to control the frequency of
a square wave generator. Active only if the PULSEMODE
property is set to 4, the digital timer output pin can generate a
square wave with a frequency between the limits of 0.05 Hz
and 100,000 Hz.

 Note: The accuracy of the frequency generated is inversely
proportional to its frequency. The IO Module uses a master
clock frequency of 3.6864 MHz and divides it by an integer
value to create the square wave output. As such, the
frequency resolution at progressively higher frequencies
worsens. The following table shows the accuracy given
various frequencies:

 100 Hz Output: Accuracy < 0.1 %

 1 kHz < 0.1 %

 10 kHz < 0.3 %

 100 kHz < 3.0 %

 .PWM1 type Numeric Access R/W Special

 Desc. This property represents the pulse width modulator output
value for channel #1. The valid range of values is from 0 to
1023. The PWM output is only active if the PULSEMODE
property is set to 5. If enabled, the PWM output is present at
the digital timer output pin.

 .PWM2 type Numeric Access R/W Special

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 91

 Desc. This property represents the pulse width modulator output
value for channel #2. The valid range of values is from 0 to
1023. The PWM output is only active if the PULSEMODE
property is set to 5. If enabled, the PWM output is present at
the digital in/out pin 4, provided that it has been set as an
output with the SETBIT or CLEARBIT property.

 .COMMBAUD type Numeric Access R/W Special

 Desc. An alternate function to the digital in/out pins 1 and 2 is an
asynchronous receiver and transmitter. If enabled, this
function can send and received serial data at a number of
different baud rates. The COMMBAUD property is used to
enable this function and set the baud rate (bits per second)
as follows:

 0) Off - This function is disabled

 1) Enabled at 1200 baud

 2) Enabled at 2400 baud

 3) Enabled at 9600 baud

 4) Enabled at 19200 baud

 Note that if the value written to COMMBAUD is non-zero
(function enabled), then digital in/out pin 1 is forced as an
input (for receiving data) while digital in/out pin 2 is forced as
an output (for transmitting data).

 .COMMPARITY type Numeric Access R/W Special

 Desc. The COMMPARITY property controls the parity mode and
number of data bits used for both receiving data and
transmitting data. The valid settings are as follows:

 0) no parity, 8 data bits

 1) odd parity, 7 data bits

 2) even parity, 7 data bits

 In all modes, the least significant data bit is both received and
transmitted first. For data framing, 1 start bit and 1 stop bit
are used.

 .COMMSENDBYTE type Numeric Access Write Special

 Desc. Writing to the COMMSENDBYTE property places a single
byte (value 0 to 255) into a buffer for transmission. The byte
is then modified according to the parity setting and
transmitted at the specified baud rate. This property is write
only and should only be written to when the transmitter buffer
is empty. The state of the transmitter buffer is returned by
reading COMMTXEMPTY. If the returned value is TRUE
(non-zero), then the buffer can accept more data.

 .COMMSENDSTRING type String Access Write Special

 Desc. Similar in function to the COMMSENDBYTE property, writing
to COMMSENDSTRING will transfer an entire string into a
buffer for transmission one character at a time. Each
character in the string is modified to match the current parity
setting. The maximum string length is 64 characters. This
property is write only and should only be written to when the
transmitter buffer is empty. The state of the transmitter buffer
is returned by reading COMMTXEMPTY. If the returned
value is TRUE (non-zero), then the buffer can accept more
data.

 .COMMTXEMPTY type Numeric Access Read Special

 Desc. This read-only property returns either TRUE (non-zero) or
FALSE (zero) depending on whether or not the transmitting
buffer is empty. Unless the returned value is TRUE, no data
should be written to the transmitting buffer.

 .COMMRXCOUNT type Numeric Access Read Special

 Desc. Reading the COMMRXCOUNT property returns the number
of bytes that have been received and placed into a buffer. If

ADVENT INSTRUMENTS INC.

92 AI-80 CALLER ID SIGNAL GENERATOR

no bytes have been received, then a value of zero is read.
The maximum number of characters that can be stored in the
receive buffer is 63 characters. Beyond that amount, an
over-flow error is reported by COMMRXERROR. Bytes are
removed from the buffer by reading COMMGETBYTE.

 .COMMRXERROR type Numeric Access Read Special

 Desc. This read-only property returns the error status of the data
receiver. A value of zero represents no error detected, while
a non-zero value indicates an error as follows:

 0) No error

 1) Parity - a byte was received without the correct parity

 2) Framing - a byte was received without a proper stop bit

 3) Over-flow - the receive data buffer has been over filled
and data has been lost.

 Reading the COMMRXERROR property will reset the error
status back to zero.

 .COMMGETBYTE type Numeric Access Read Special

 Desc. COMMGETBYTE is used to read data from the receive data
buffer. If the COMMRXCOUNT is greater than zero, reading
COMMBETBYTE will return a value between 0 and 255. If no
data is contained in the buffer (COMMRXCOUNT=0), then
reading COMMGETBYTE will return a value of -1.

 .MEMREGISTER type Numeric Access R/W Special

 Desc. The IO Module can be used to store either 32 numeric values
or 128 characters in non-volatile memory. This memory
space is available for user applications and its contents will
remain intact even if the AI-80 is turned off or reset. Access
to this memory space is performed thought the
MEMREGISTER property. This property is used to specify
which register location is being accessed. The valid range of
values is from 1 to 32. Each register can contain either a
single numeric value or 4 characters. Strings longer than 4
characters use successive registers. To write or read from
any of the registers, set MEMREGISTER to the register
number. Then access the MEMWRITENUM,
MEMWRITESTRING, MEMREADNUM, or
MEMREADSTRING properties. If the access was
successful, reading the MEMREGISTER value will return -1.

 Note: Strings are always terminated by the null character (0).
As such, writing a string of 4 characters requires 2 registers.
The first register stores the four characters, while the second
register stores the null character.

 .MEMWRITENUM type Numeric Access Write Special

 Desc. This property is used to write a numeric value to a memory
register in the IO Module’s non-volatile storage. First a
register value between 1 and 32 must be specified with the
MEMREGISTER property. Then writing a numeric value to
this property will transfer that value to the memory register.

 .MEMWRITESTRING type String Access Write Special

 Desc. This property is used to write a character string to a memory
register(s) in the IO Module’s non-volatile storage. First a
register value between 1 and 32 must be specified with the
MEMREGISTER property. Then writing a string to this
property will transfer that value to the memory register. Each
register can store 4 characters. If the string is longer, then
successive registers are over-written until the entire string is
stored.

 .MEMREADNUM type Numeric Access Read Special

 Desc. This property is used to read a numeric value from a memory
register in the IO Module’s non-volatile storage. First a
memory register value between 1 and 32 must be specified
with the MEMREGISTER property. Reading this property

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 93

returns the value stored in the register.

 .MEMREADSTRING type String Access Read Special

 Desc. This property is used to read a character string from a
memory register in the IO Module’s non-volatile storage.
First a memory register value between 1 and 32 must be
specified with the MEMREGISTER property. Reading this
property returns the string store in the register. Since strings
are terminated with the null (0) character, if no null character
exists in the specified register, successive registers are read
until the null character is detected.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 95

 Section 4-3 System Software Overview

 The AI-80 allows for a large degree of flexibility and customization in order to
support a wide range of applications. Key to this flexibility is the structure of the
system program files stored in the on board non-volatile memory. This section
presents an overview of the system files, along with showing how to customize
the AI-80 functionality.

 System Files
 All of the software used to operate the AI-80 is contained in non-volatile flash
memory. Being re-programmable, it allows field upgrading of the software, as
new features become available. However, since the software can be changed,
there is a potential for unintentionally modifying and erasing key system files.
This can cause improper operation or result in an AI-80 that is effectively
unusable. Fortunately, the AI-80 has been designed to be recoverable from a
corruption of any of the key flash memory files.

 Three different types of files are stored within the AI-80’s flash memory. They
are:

• User Program Files
• System Program Files
• Operating System Files

Normally, the A.I.WorkBench software will only display the User Program Files.
These are the program files created with the A.I.WorkBench software and
perform the various telephone related high level testing functions. The System
Program Files, though also created with the A.I.WorkBench software, perform
various system house keeping related functions. These includes resetting the AI-
80 hardware properties, performing system checks, and controlling the execution
of user developed programs. All of the source code for the system program files
are included in the A.I.WorkBench software. This allows for customization of
these programs for special applications. The third category of files is the
Operating System Files. These files provide the low level code and data that the
AI-80’s internal processor runs with. Missing operating system files will generally
prevent the AI-80 from executing properly, and usually requires the complete
reloading of all the files in the flash memory.

All the files contained in the AI-80 flash memory, including the system files, can
be viewed in the Flash Memory Files window. Before the system files can be
accessed or modified, the Access System Files option must be enabled. This is
done by selecting the AI-80 Caller ID Generator item at the top of the Flash
Memory Files window, and then choosing the [FILE] [PROPERTIES] menu
command (or right click the mouse). The displayed windows will show various
properties of the AI-80. Click the mouse on the System tab and enable the
Access System File check box, as shown below.

ADVENT INSTRUMENTS INC.

96 AI-80 CALLER ID SIGNAL GENERATOR

After clicking the OK button, the file list in the Flash Memory Files window is
refreshed with all the files present in the AI-80 non-volatile flash memory.
Following the User Program Files, the System Program Files and Operating
System Files are displayed in format similar to the figure below.

In order to understand the purpose and functionality of each of the system files,
the AI-80 “boot”, or initialization, process needs to be described.

System Initialization
Before any customization of the system files is performed, it is important to
understand how they are used and work with each other. Many of the files are
only accessed during the initialization of the AI-80, while other system files (like
the System Launcher) is continually executing as a separate process monitoring
and controlling the user programs.

The sequence of steps that occur in the AI-80 when the unit is turned on, is as
follows:

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 97

1. Following a hardware reset of the AI-80 internal processor, a “System
Loader” program (stored in the flash memory) is executed. Though
contained in the flash memory with all the other system and user files, the
System Loader is contained in a protected section that can not be
overwritten. Unless a hardware fault exists within the AI-80, the System
Loader program will always execute after the unit is turned on.

2. The System Loader program searches the flash memory for the Primary
AI-80 Application program. If located, the System Loader retrieves the
program, loads it, and then passes execution to it. If for any reason, the
System Loader can not load the program it will display “Err1” on the front
panel display.

3. The Primary AI-80 Application Program implements the low level system
functionality controlling all the AI-80 hardware aspects. This includes the
host PC communications and the multiple virtual interpreter processors
that execute the user and system programs.

4. One of the initial tasks of the primary program is to retrieve the Unit
Parameter Data file from the flash memory. This file contains various
calibration parameters used to improve the accuracy of the AI-80
measurements. If this file can not be found, the program will display
“Err2” on the front panel display. In the situation the Unit Parameter Data
file is present in the flash memory, but some or all of the correction
factors are invalid or corrupted, the AI-80 will display “CAL” on the front
panel and flash the Start LED. This indicates that the correction factors
could not be loaded. Pressing the Start will resume normal operation
without the correction factors present.

5. Once the Unit Parameter Data file is loaded, the AI-80 will search for
system file #1 and execute it. If this file is not present in the flash
memory, the front panel display shows “Err3”.

6. The System Boot program (file #1), is the first program file that can be
customized by the A.I.WorkBench software. All of the source code files
for the system files are included in the A.I.WorkBench software. The
Boot program performs two simple functions. Firstly, it launches another
program called System Reset. System Reset sets all the hardware
properties of the AI-80 to their default state. Once System Reset has
finished, the boot program decides what program to execute next
dependent on any keys being pressed. If no keys are pressed, the boot
program launches the Startup program, and terminates itself. If the
Pause key is held for more than 2 seconds, the boot program launches
the System Check program. Likewise if the Stop key is held for more
than 2 seconds, the System Exercise program is launched.

7. Assuming no keys have been pressed during the System Boot program,
it launches the Startup program. The Startup Program is very short and
is meant to be easily modified. It sets the initial program number for the
System Launcher program. Normally this is 10. It then launches the
System Launcher program and terminates itself.

8. The System Launcher program is one of the most complex system
programs, in that it manages the execution of all the User Programs.
Using the initial program number from the Startup program, the System
Launcher displays the program number on the front panel and monitors

ADVENT INSTRUMENTS INC.

98 AI-80 CALLER ID SIGNAL GENERATOR

the key pad for any user initiated actions. Pressing the Start key
launches the selected user program, while the Pause key and Stop key
suspend and terminate the user program respectively. The System
Launcher program monitors the progress of the user program and once
the user program has finished, the System Launcher will reset all the AI-
80 hardware properties.

Customization
Since the source code for the system program files are included with
A.I.WorkBench software, the programs can be modified to suit custom
applications. Three of the most common and useful customization techniques
are:

• Changing the default hardware settings
• Changing the default startup program number
• Changing the user interface and operation

 Changing the Default Hardware Settings
 In many cases, the AI-80 is required to use a hardware setting that is different
from the default value. Examples of this include the telephone interface settings.
If restricted to testing certain types of telephone, the line impedance may require
a setting of 600 ohms instead of the default 900 ohm. Or Port B is used as the
active port instead of Port A (for testing two line telephones).

 Changing the default hardware settings, requires modifying the System Reset
program. This program is launched when the AI-80 is first initialized and once
any user program has finished its execution. Thus any changes made in the
System Reset program are always reflected in the AI-80 hardware settings. The
steps to modifying the program are as follows:

 1) Load the project “projects\standard\system\reset.prj” file
 2) Modify the source file with the built-in editor
 3) Compile the program (Shift-F5)
 4) Load the modified program into the flash memory (Ctrl-W)

 Changing the Default Startup Program Number
 A second common customization technique is to change the default startup
program number. As a default value, user program number 10 (Bellcore Type I -
Multiple Message Format Caller ID) is always selected at power up. If other
programs are used more often, the default startup program number can be
changed.

 The setting for the default program number is contained in the Startup program
file. It can be changed as follows:

 1) Load the project “projects\standard\system\startup.prj” file
 2) Using the source file editor modify the line:
 const LauncherStart = 10
 with the new default program number.
 3) Compile the program (Shift-F5)

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 99

 4) Load the modified program into the flash memory (Ctrl-W)

 Changing the User Interface and Operation
 The AI-80 user interface is controlled by the System Launcher program. It allows
the selection of different programs along with their controlled execution. However
for some application environments, such as production and manufacturing of
telephone devices, usually a single specialized program is executed. In these
environments, the user interface may require changes to support specific
production requirements.

 For these applications, the System Launcher may not be required and could be
replaced by a custom control program. In this case, the custom program should
be started on power up, instead of the System Launcher. This can be
accomplished by modifying slightly the Startup program. It should be changed as
follows:

 1) Load the project “projects\standard\system\startup.prj” file
 2) Using the source file editor modify the line:
 const StartProgram = 6
 with the new custom control program number.
 3) Compile the program (Shift-F5)
 4) Load the modified program into the flash memory (Ctrl-W)

 Restoring System Files
 Due to the flexible software architecture of the AI-80, certain situations exist that
could cause the flash memory file system to become corrupted. These include
accidentally modifying or deleting system files, power loss during file transfers,
and serial communication faults during file transfers. Under all of these
conditions, the files required to restore the AI-80 are included with the
A.I.WorkBench software.

 As updates are made available, new data files can be transferred from the
A.I.WorkBench software to the AI-80. This section deals only with restoring a
damaged file system or individual files. For information on updating the AI-80
files with a newer version, see section 4-6: Updating System Files.

 Selecting the [HELP] [RESTORE SYSTEM FILES] menu command displays a
window similar to the following figure. Within this window, several update options
can be selected, depending on the desired action and fault experienced. One of
six different restore actions can be performed, ranging from a complete re-
initialization of all files to simply updating the standard program files.

ADVENT INSTRUMENTS INC.

100 AI-80 CALLER ID SIGNAL GENERATOR

 The following table lists various fault conditions along with suggested remedies.

 Fault: Cause:

 ERR1 on display The primary AI-80 application program can’t be found or is
corrupted. This will prevent the A.I.WorkBench software from
communicating with the AI-80, and prevent any file transfers.

 Remedy:

 Select the “Full System Restore” action. This re-initializes the
AI-80 file system and loads all the factory default files. All
user programs store in the flash memory are lost. If it is
important to recover the user programs before re-initializing
the file system, perform the following actions:

 a) Select the “Boot System From File” option. This will
transfer the AI-80 application program via the serial port,
and allow the A.I.WorkBench software to establish a
connection to the AI-80.
 b) Select the [FILE] [READ ALL FILES FROM FLASH]
menu item and select all the files to save.
 c) Once the files have been saved, select the “Full System
Restore” action to restore all the system files.
 d) Load the user program files that were saved in step b.

 Note that it may not be possible to recover any of the user
program files if the AI-80’s file system is severely damaged.

 Fault: Cause:

 ERR2 on display, or
CAL flashing on the
display

 The Unit Parameter Data file is missing or corrupted. This file
contains the calibration data for the AI-80 and can not be
loaded by the primary appellation program.

 Remedy:

 Select the “Update Unit Parameter Data Only” action. This
will restore the file provided the file system is not damaged. If
this operation does not work due to a damaged file system,
then select “Full System Restore” and follow the procedure
listed for “ERR1”

 Fault: Cause:

 ERR3 on the display One or more of the system program files are missing or
corrupted.

 Remedy:

 Select the “Update System Program Files Only” action. This
restores all the system files provided the file system is not
damaged. If this operation does not work due to a damaged
file system, then select “Full System Restore” and follow the
procedure listed for “ERR1”

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 101

 Fault: Cause:

 Programs P10
through P99 fail to
operate

 One or more of the standard programs may have been
deleted or is corrupted.

 Remedy:

 Select the “Update Standard Program Files Only” action. This
restores all the standard program files (P10 through P99)
provided the file system is not damaged. If this operation
does not work due to a damaged file system, then select “Full
System Restore” and follow the procedure listed for “ERR1”

 Full System Restore Action
 This action completely restores all the files contained within the AI-80. It should
be used if the AI-80 display shows ERR1 on power up, or the A.I.WorkBench is
unable to establish communications with the AI-80. It returns the AI-80 to a
factory default state and erases any user programs stored in the non-volatile
memory.

 Before this action can be started, the unit’s serial number must be selected from
the drop down list box. It is important that the correct serial number is selected,
as it determines which Unit Parameter Data File is loaded into the AI-80’s
memory. This file contains the calibration data for the AI-80 and is unique for
each unit. Anytime the A.I.WorkBench software connects with an AI-80, it will
read its calibration file and store it to disk. If the calibration data has never been
read by the A.I.WorkBench software, contact technical support for assistance, as
we can supply this file from our records.

 Note that as a large amount of data is transferred over the serial port, this
procedure can take a number of minutes to complete, and progress can appear
slow at times.

 Update Unit Parameter Data Only Action
 The Unit Parameter Data file contains all the calibration data for the AI-80. If it
becomes is missing the AI-80’s display shows ERR2. If the data contained within
the file is corrupted, the display will flash CAL. In either case, selecting the above
action will restore the file.

 As with the “Full System Restore” action, the unit’s serial number must be
selected from the drop down list box. If the serial number is not listed, then the
A.I.WorkBench software has never been connected to the unit and been able to
read its calibration data. In this case contact technical support for assistance, as
we can supply this file from our records.

 If this action fails, the AI-80 file system may be damaged, which may require a
Full System Restore to correct.

 Update System Program Files Only Action
 This action restores the system program files to the AI-80’s non-volatile memory.
If these files are corrupted or damaged, the display may show ERR3. As these
files provide the user interface, the front panel keys may be ineffective.

ADVENT INSTRUMENTS INC.

102 AI-80 CALLER ID SIGNAL GENERATOR

 If this action fails, the AI-80 file system may be damaged, which may require a
Full System Restore to correct.

 Update Standard Program Files Only Action
 The standard program files (P10 through P99) are factory loaded programs that
provide basic Caller ID and telephony related testing programs. This action will
reload all of these files into the AI-80’s memory.

 If this action fails, the AI-80 file system may be damaged, which may require a
Full System Restore to correct.

 Update System Application Only Action
 This selection will update the AI-80’s primary application program. This is the
main program running on the AI-80’s internal processor, which allows for
communication with the PC and execution of the system and standard program
files. The primary appliation program stored in the AI-80’s memory is overwritten
with the latest copy distributed with the A.I.WorkBench software.

 Note: It is not recommended to use this action to update an AI-80 with

the latest software release. This is because other files may require an
update at the same time, or changes in the file size can cause
fragmentation in the AI-80’s memory with this action. When performing
compete updates of the AI-80 software, see section 4-6: Updating AI-80
Software.

 Boot System From a File
 The last action that may be selected from the “Restore System Files” window is
“Boot System From a File”. While normally at power up the AI-80 loads the
primary application program from the flash memory, it is possible to load the
program via the serial port. Bypassing the flash memory, the primary application
program is loaded directory into the AI-80 RAM and executed. Once running the
normal operations can be resumed in order to restore the program in the flash
memory.

 To perform the system boot, select the “Boot System From a File” action and
click the mouse on the GO button. This displays the following window.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 103

 To proceed with the process of transferring the application program, follow these
steps:

 1. Click the SELECT button in order to specify the program to load

into the AI-80. Choose the file named A80_Code.x and press the OPEN
button.

 2. Choose the communications port the AI-80 is connected to from
the drop down list box.

 3. Click the GO button. Then once instructed to, turn on the AI-80.
This will initiate a process that loads the program file into the AI-80.
Once the transfer is complete (may take a few minutes), the window
should display the same information as above.

 Depending on the state of other system files in the flash memory, error messages
may be displayed by the AI-80. However, the A.I.WorkBench program should be
able to read and modify the flash memory contents in order to replace the
damaged or missing system files.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 105

 Section 4-4 Auto-Config Command Files

 Auto-Config command files are shortcuts to performing significant file
manipulations within the AI-80 flash memory files. If a large number of programs
must be loaded into an AI-80, or its flash memory restored to factory default
settings, using the auto-config commands files provides a method to automate
the process. These command files contain a list of simple commands that the
A.I.WorkBench follows to either read, load, or delete files from the flash memory.

 To use the auto-config files, select the first entry displayed in the Flash Memory
Files window. This is usually labeled “AI-80 Caller ID Generator”. Once selected,
click the right mouse button, or select the [FILE] [PROPERTIES] menu
command. This will display the following window.

 To execute an auto-config file, select the SYSTEM tab and click the EXECUTE
AUTO-CONFIG button. Once the desired command file is selected, click the
OPEN button and the commands will be executed. As the file is being
processed, a progress window displays the current command being executed.

 Once finished, the window will be removed, and the Flash Memory File window is
refreshed reflecting any changes made.

ADVENT INSTRUMENTS INC.

106 AI-80 CALLER ID SIGNAL GENERATOR

 The auto-config command files are ASCII files and can be created or edited with
an ASCII editor, such as the common Notepad program. The files can use five
different commands to modify the flash files. Any lines in the file starting with ‘*’
are treated as comment lines and are ignored. The supported commands are:

 INITFLASH
 This command requires no other parameters and completely erases the flash
memory contents including all user programs and system files.

 Syntax: INITFLASH

 READFILE
 This command will read the contents of the specified file ID number from the
flash memory and save it to the specified file name on the host computer.

 Syntax: READFILE | <file ID number> | <file name to save to>

 WRITEFILE
 This command transfers the specified file from the host computer to the flash
memory. The file’s ID number (used to identify it within the AI-80 flash memory
files) does not need to be specified, as it is encoded in the specified file.

 Syntax: WRITEFILE | <file name to read from>

 WRITEAPP
 This command is a special variation of the WRITEFILE command. It transfers
the low level system applications to the AI-80.

 Syntax: WRITEAPP | <app. ID number> | <title> | <code file>

 DELETEFILE
 This command deletes the specified file ID number.

 Syntax: DELETEFILE | <file ID number>

 Note: Auto-Config files can be executed upon program startup by

including /ACX followed by the file name on the A.I.WorkBench
command line.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 107

 Section 4-5 Creating User Libraries

 Libraries are collections of subroutines and functions combined into a single
source file. They can simplify programming by performing common or repeatedly
used operations. Basic libraries are supplied with the A.I.WorkBench software
while additional libraries can be created by the user.

 All of the libraries supported by the A.I.WorkBench software are listed in the
Library tab of the Project Properties window. Along with the library name, its
version and target information are displayed. If the box to the left of the library
name is checked, then that library will be included into the current project.

 As shown in the figure below, the Caller ID Message Builder library is included in
the current project

 The following steps outline the procedure to create a new library:

• Start a new project
• Write the library source code
• Compile and check for errors
• Write the library usage file
• Add the library to the A.I.WorkBench

 Start a New Project:
 To create a user library, the first step is to create a new project by selecting the
[FILE] [NEW PROJECT] menu command. The project’s properties are not critical
to the library, as the library is not compiled and loaded into the AI-80 as a
separate file. It is important that only one source file is used in the project. All of
the functions and subroutines in the library must be contained within one source
file. Both the project file and source code file must be saved to the LIB sub-
directory.

ADVENT INSTRUMENTS INC.

108 AI-80 CALLER ID SIGNAL GENERATOR

 Write the Library Source Code:
 The source code file contains all the functions and subroutines that make up the
library. In order to maintain a large degree of portability, library routines should
not use EXPORT or IMPORT variables to share data between processes, unless
they are very clearly documented in their use. Also, as the variable data space is
limited in the AI-80, the number of variables declare should be keep to a
minimum. String variables consume a large amount of space and should be
used sparingly.

 Compile and Check for Errors:
 Use the compiler to check and correct any errors in the source file.

 Write the Library Usage File:
 An optional usage file can be created with any ASCII file editor. This file will be
displayed in the source file editor when a project uses the library. It should
contain information on how to use the routines contained with the library and any
additional data that is relevant. The file must have the same file name as the
library source file except with the .def extension. As well, it must be located in the
LIB sub-directory with the source and project files.

 Add the Library to the A.I.WorkBench:
 Finally, from within the Libraries tab of the Project Properties window (see above),
click the “Add a New Library...” button. This shows a window similar to below.

 In the displayed window, all the blank fields must be filled out. The library name
is the title displayed in the Project Properties window. The library version number
can be used to track updates or changes to the library. Clicking the “Browse”
button displays the list of source files present in the LIB sub-directory. Select the
appropriate file and click the “Open” button. Lastly, the target device must be
selected from the drop-down list. The target device information is used by the
compiler to make sure any project using the library is compatible with the AI-80 it
is being developed for.

 After entering the information and clicking the OK button, the new library is added
to the list in the Project Properties window.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 109

 Section 4-6 Updating the AI-80 Software

 As new versions of the A.I.WorkBench software are released, they may contain
updates to the AI-80’s internal software. By selecting the [HELP] [UPDATE
SYSTEM FILES] menu command, the AI-80’s software can be updated to match
the latest release. Displayed in the following figure are the AI-80’s current version
information along with the version the A.I.WorkBench software supports.
Normally, the update should only take place if the current version number is less
than the version number supported by the A.I.WorkBench software.

 To start the update, click the mouse on the Update button. This starts a
procedure that performs the following tasks:

• Read the AI-80’s calibration data and save it
• Read all the AI-80’s user programs and save them
• Re-initialize the AI-80’s file system by erasing all the stored files
• Load the latest version of the primary application program
• Load the calibration data file
• Load the latest version of the system programs
• Load the latest version of the standard program files
• Load all the user program files that were previous saved

 Depending on the connected baud rate, the procedure can take several minutes
to complete. As the tasks are completing, the status area in the above window is
updated. When the calibration data and user programs are read from the AI-80,
they are stored in the following temporary directory:

 <A.I.WorkBench Program Files>\projects\standard\system\tempSN<xxxxxx>

 Where <xxxxxx> is the AI-80’s serial number. At the end of the procedure and if
no error was detected, the temporary directory is deleted along with all the files
contained in it. However, if an error is detected, the update procedure is halted

ADVENT INSTRUMENTS INC.

110 AI-80 CALLER ID SIGNAL GENERATOR

and any temporary files are kept in the directory. These files may be needed to
restore the AI-80.

 To stop the updating procedure at any time, click the mouse on the Stop button.
The current task will run to completion, at which time the user is asked to confirm
aborting the update. Note that stopping the update procedure once the AI-80’s
flash memory has been erased will leave it in an unusable state. If this occurs,
follow the procedures in section 4-3 to perform a full system restore.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 111

 Appendix A A.I. WorkBench Compiler Errors

 The compiler will generate various error messages if it can not understand the
syntax of any program line, or detects a mistake in the use of any identifiers.
Each error message is associated with a 4 digit code. All of the possible error
messages are listed here in numerical order.

 Code Error

 1000 Can’t Find Target
 The data files for the specified target device (Project Settings) can not be

found. Check that the project settings are correct and/or the A.I.WorkBench
software is of at least the same version that created the project file.

 1001 Target Version Mismatch
 The specified target device is not supported by this version of the compiler.

This may occur when a project is created with a compiler version that is
newer than this one.

 1002 Can’t Find VTP data file
 The VTP data file, which contains information on the target device’s

command set, can not be located. A file might be missing, or it was never
installed correctly.

 1003 Can’t Find HAL data file
 The HAL data file, which contains information on the target device’s

hardware abstraction layer, can not be located. A file might be missing, or it
was never installed correctly.

 1004 Too Many Errors
 The maximum number of compiler errors has been reached and the

compilation process has stopped. This limit can be adjusted in the project
settings.

 1005 Unsupported Command
 A command or function used in the program is not supported by the target

version. This error can occur if the project is using commands or functions
only available for a newer software version. Either the offending command
should be removed, or project’s target version changed.

 1010 Invalid Program Line
 The program line does not start with a reserved keyword and is not treated

as a comment line (starts with * or ;). As such the program line in invalid.

 1011 Incorrectly Formatted Quotation
 The text string used in this program line is not terminated correctly inside

quotation marks. If quotation marks are used inside a text string, they must
appear twice.

 1012 Unknown or Invalid Symbol
 The program line contains an invalid symbol. This means that the compiler

could not determine whether the line contains a keyword, identifier, numeric
literal, text string, or operator. This can occur if no spaces are added
between numbers and identifiers.

 1020 Statements Outside Program Block
 All program statements, other than constant and variable definitions must be

ADVENT INSTRUMENTS INC.

112 AI-80 CALLER ID SIGNAL GENERATOR

inside either a PROCESS, SUB, or FUNCTION block.

 1021 Statement Syntax Error
 The syntax of the program line does not match the required form for the

command. Check the structure of the command, and ensure that
comments are preceded with ‘;’.

 1022 Invalid Data Type
 The data type specified is unknown to the compiler and must be either

NUMERIC or STRING to denote variables containing floating point numbers
or text.

 1023 Duplicate Identifier
 The declared identifier has already be declared elsewhere in the program.

Variable, subroutine, and label names must be unique.

 1024 Out of Variable Space
 The number of declared variables exceeds the amount of memory storage

allocated to the program. Try to reduce the number of variables. Note that
string variables require 16 times more space than numeric variables.

 1025 Too Many Labels
 The maximum number of labels has been exceeded. These are not labels

created with the LABEL command, but rather internally generated labels
used by the target’s interpretive processor. Under normal circumstances
this error should never occur. Please contact technical support for
assistance.

 1026 Invalid Register Specified
 The register location specified with the IMPORT or EXPORT command is

outside the valid range.

 1027 Register Location is Allocated
 The register location specified with the IMPORT or EXPORT command has

been previously allocated and can not be used.

 1030 Program Too Big
 The compiled program’s object code exceeds the maximum size limit for the

target device. The program could be split into multiple programs in order to
not exceed the maximum program size.

 1031 Unknown Identifier
 The identifier referenced in the program line has not been declared by either

of the LOCAL, GLOBAL, EXPORT, IMPORT or CONST keywords.

 1032 Unknown HOP
 The specified Hardware Object Property (HOP) is unknown to the specified

target device. This can occur if the HOP is either incorrectly spelled, or the
project’s target device does not support the specified HOP.

 1033 Can’t Write to Read Only HOP
 The specified HOP can not be written too. As such it may not be assigned a

value by the LET command.

 1034 Can’t Read from Write Only HOP
 The specified HOP can not be read from. As such it may not appear inside

any expressions. It can only be assigned values by using the LET
command.

 1035 HOP Access Restricted
 The specified HOP is restricted to system level programs. Access to the

system level HOP’s can be set in the Project Settings window. Incorrect
use of the system level HOP’s can cause unstable operation.

 1036 Can’t Write to a Constant
 A constant value can only be read from and not written too. As such, a

defined constant can not be assigned a new value with the LET command.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 113

 1037 Can’t Write to a Parameter
 Parameters used to pass values into subroutines and functions are read

only. There value can not be changed and are treated as local constants.

 1038 Data Type Mismatch
 The data types of operands in the expression are mismatched. This results

when numeric and string operands are mixed in an expression.

 1039 Unknown Operator Symbol
 An operator used in the expression is unknown.

 1040 Reserved Key Word Used
 The identifier specified in the program line is the same as a reserved

keyword. All identifiers must be different from the reserved keywords.

 1041 Invalid Function Usage
 The function can not be used as an operand in this context. The operand

must be a variable, HOP, or literal. A possible cause of this error is
including a function in the parameter list of a calling subroutine.

 1050 Undefined Subroutine
 The subroutine name given in the CALL statement is not defined. Check

that the spelling of the subroutine name is correct, and that it has been
defined.

 1051 Missing END LOOP Statement
 No END LOOP statement can be found. All LOOP statements must have a

matching END LOOP statement in order to define the bottom of the program
loop.

 1052 Missing END PROCESS Statement
 All PROCESS blocks must be terminated with the END PROCESS

statement. This marks the end of a process.

 1053 Missing END IF Statement
 No END IF statement can be found. All IF statements must have a

matching END IF statement in order to define the end of the conditional
statements.

 1054 Missing NEXT <identifier> Statement
 No NEXT statement can be found. All FOR statements must have a

matching NEXT statement in order to define the end of the loop.

 1060 Bad use of IF Statement
 The program line’s syntax does not match the requirements for the IF-

THEN-ELSE command. Check the syntax and ensure that any comments
after the statement start with ‘;’.

 1061 Bad use of END Statement
 The END statement is either of incorrect syntax, or it may not be used in its

present location in the program.

 1062 Bad Use of EXIT Statement
 The EXIT statement is either of incorrect syntax, or it may not be used in its

present location.

 1063 Bad Use of FOR Statement
 The syntax of the FOR statement is incorrect. Check the syntax of the

program line and ensure that any comments after the statement start with ‘;’.

 1064 Can’t Locate Specified Label
 The label specified can not be found. Any labels used must be defined with

the LABEL command. Check the spelling of the specified label such that it
matches the defined label.

 1070 Not Numeric Data Type

ADVENT INSTRUMENTS INC.

114 AI-80 CALLER ID SIGNAL GENERATOR

 The variable specified must be of numeric data type. String variables are
not allowed in this context.

 1071 GOTO Not Allowed Here
 GOTO statements are not allowed inside a LOOP statement. If an

unconditional branch is needed, use the FOR-NEXT looping structure
instead.

 1072 RETURN Not Allowed Here
 RETURN statements are not allowed inside a LOOP statement. If a

subroutine return is needed, use the FOR-NEXT looping structure instead.

 1073 EXIT SUB, EXIT FUNC Not Allowed Here
 Subroutines and functions can not be exited inside a LOOP statement. If

such an exit is required, use the FOR-NEXT looping structure instead.

 1074 NEXT Without FOR
 The program line contains a NEXT statement without a matching FOR

statement. A FOR statement must always precede a NEXT statement.

 1075 Bad use of SELECT Statement
 The syntax of the SELECT statement is invalid. Check the syntax of the

statement and ensure that any comments after the program line start with ‘;’.

 1076 CASE Without SELECT
 The CASE statement can only be used inside the SELECT structure.

Check the syntax of the SELECT-CASE statements.

 1080 Bad Parameter List Syntax
 The parameter list definition for the subroutine or function is incorrect.

Check the syntax of the parameter list and ensure that each parameter is
defined with a valid data type and are separated with commas, if more than
one parameter is used.

 1081 Parameter Data Type Mismatch
 The data type of a parameter passed to a subroutine or function does not

match the data type in the routines definition statement.

 1082 Missing END SUB Statement
 All subroutine program blocks must be terminated with the END SUB

statement. This marks the end of the subroutine, and the point where
program control returns to the calling statement.

 1083 Missing END FUNCTION Statement
 All function program blocks must be terminated with the END FUNCTION

statement. This marks the end of the function, and the point where program
control returns to the calling statement.

 1084 Unknown Function
 The function being calling in the expression is undeclared. Check the

spelling of the function to ensure it matches the declaration.

 1085 GOSUB and RETURN Not Allowed
 The GOSUB and RETURN statements can not be used inside any SUB or

FUNCTION blocks.

 1090 Invalid Library Target Device
 The project’s target device name does not match the device name required

by an included library file. Check the project settings to make sure any
selected libraries match the project’s target device.

 1091 Library Version Not Supported
 A library used in this project requires a device target version number that is

greater than specified for this project. Check the project settings to ensure
that the project’s target version number is at least equal to the version
number of any libraries used.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 115

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 117

 Appendix B AI-80 Built-in Programs

 The description and operational details of the AI-80 built-in programs are shown
below. All of the source file(s) and project files for these programs are included
with the A.I.WorkBench software. They are located in a sub-directory of the
A.I.WorkBench files, under the \projects\standard\ directory. These programs
can be modified to suit special applications, or can serve as examples in
performing various telephony functions.

 No. 10 Title: Bellcore Type I - Multiple Message Project: p10_Bel1

 Description: Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time,
calling number, and calling name in the Bellcore Multiple Message Format.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 2 seconds at 22 Hz and 80 Vrms
 2) Wait 500 msec
 3) Send FSK (Bell 202 at -13 dBm (600 ohms))
 300 Preamble bits, 180 Mark bits
 Date & Time = 10:24 AM March 26
 Calling Number = 5556789
 Calling Name = John Smith

 No. 11 Title: Bellcore Type I - Single Message Project: p11_Bel2

 Description: Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time
and calling number in the Bellcore Single Message Format.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 2 seconds at 22 Hz and 80 Vrms
 2) Wait 500 msec
 3) Send FSK (Bell 202 at -13 dBm (600 ohms))
 300 Preamble bits, 180 Mark bits
 Date & Time = 7:39 PM October 3
 Calling Number = 5551212

 No. 12 Title: Bellcore VMWI - Activate Project: p12_Bel3

 Description: Send a FSK Caller ID message containing Visual Message Waiting Indicator (Activate)
message (Bellcore Multiple Message Format).

 Usage:
 1) Connect CPE to port A
 2) Start program

 Details:
 1) Send FSK (Bell 202 at -13 dBm (600 ohms))
 300 Preamble bits, 180 Mark bits
 Message Type = 0x82 (VWMI)
 Visual Indicator Parameter = Activate

 No. 13 Title: Bellcore VMWI - Deactivate Project: p13_Bel4

ADVENT INSTRUMENTS INC.

118 AI-80 CALLER ID SIGNAL GENERATOR

 Description: Send a FSK Caller ID message containing Visual Message Waiting Indicator (Deactivate)
message (Bellcore Multiple Message Format).

 Usage:
 1) Connect CPE to port A
 2) Start program

 Details:
 1) Send FSK (Bell 202 at -13 dBm (600 ohms))
 300 Preamble bits, 180 Mark bits
 Message Type = 0x82 (VWMI)
 Visual Indicator Parameter = Deactivate

 No. 15 Title: Bellcore Type II - Multiple Message Project: p15_Bel5

 Description: Send a FSK Caller ID Type II (off-hook) message containing the date/time, calling
number, and calling name in the Bellcore Multiple Message Format.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the off-hook state
 3) Start program

 Details:
 1) Generate SAS tone at 440 Hz for 300 msec at 100 mVrms (unterminated)
 2) Wait 25 msec
 3) Generate CAS tone at 2130/2750 Hz for 80 msec at 100 mVrms (unterminated)
 4) Wait for CPE to send DTMF ACK tone (time-out at 165 msec)
 4) If ACK tone received, wait 100 msec and send FSK data
 5) FSK Message details (Bell 202 at -13 dBm (600 ohms))
 80 Mark bits
 Date & Time = 10:24 AM March 26
 Calling Number = 5556789
 Calling Name = John Smith

 No. 20 Title: UK BT Type I - CLIP Message Project: p20_Bt1

 Description: Send a Caller ID message using the UK BT signaling method. With Port A, reverse the
line polarity, then send the DTAS tone followed by the FSK data (V.23). After the FSK
data, ring the telephone twice.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Reverse the line polarity
 2) Wait 200 msec
 3) Send DTAS tone (2130/2750 Hz for 80 msec at 100 mVrms)
 4) Wait 150 msec
 5) Send FSK (V.23 at -14 dBV)
 300 Preamble bits, 180 Mark bits
 Date & Time = 11:05 AM July 29
 Calling Number = 071 250 7587
 Calling Name = John Bull
 6) Wait 500 msec
 7) Ring for 700 msec seconds at 22 Hz and 80 Vrms
 8) Wait 700 msec
 9) Ring for 700 msec seconds at 22 Hz and 80 Vrms

 No. 21 Title: UK CCA Type I - CLIP Message Project: p21_Cca1

 Description: Send a Caller ID message using the UK CCA signaling method. With Port A, briefly ring
the telephone, then send the FSK data (V.23). After the FSK data, ring the telephone
twice.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 350 msec seconds at 25 Hz and 60 Vrms
 2) Wait 600 msec
 3) Send FSK (V.23 at -14 dBV)
 300 Preamble bits, 180 Mark bits
 Date & Time = 4:21 PM on January 31
 Calling Number = 1234567890

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 119

 Calling Name = John Bull
 6) Wait 500 msec
 7) Ring for 400 msec seconds at 25 Hz and 60 Vrms
 8) Wait 200 msec
 9) Ring for 400 msec seconds at 25 Hz and 60 Vrms

 No. 22 Title: France Type I - CLIP Message Project: p22_Fr1

 Description: Send a Caller ID message preceded with a short ringing burst. With Port A, briefly ring
the telephone, then send the FSK data (V.23). After the FSK data, ring the telephone
twice.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 250 msec seconds at 25 Hz and 70 Vrms
 2) Wait 600 msec
 3) Send FSK (V.23 at -13 dBm (347 mVrms unterminated))
 300 Preamble bits, 180 Mark bits
 Date & Time = 2:09 AM on December 15
 Calling Number = 0115551234
 Calling Name = John Smith
 6) Wait 500 msec
 7) Ring for 600 msec seconds at 25 Hz and 70 Vrms
 8) Wait 400 msec
 9) Ring for 600 msec seconds at 25 Hz and 70 Vrms

 No. 23 Title: Australia Type I (Ring Burst Alert) Project: p23_Aus1

 Description: Send a Caller ID message preceded with a short ringing burst. With Port A, briefly ring
the telephone, then send the FSK data (Bell 202 - Bellcore Multiple Message Format).
After the FSK data, ring the telephone twice.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 400 msec seconds at 25 Hz and 70 Vrms
 2) Wait 800 msec
 3) Send FSK (Bell 202 at -13 dBm (347 mVrms unterminated))
 300 Preamble bits, 180 Mark bits
 Date & Time = 11:45 PM on June 7
 Calling Number = 5551234
 Calling Name = John Smith
 6) Wait 500 msec
 7) Ring for 400 msec seconds at 25 Hz and 70 Vrms
 8) Wait 200 msec
 9) Ring for 400 msec seconds at 25 Hz and 70 Vrms

 No. 24 Title: Australia Type I (Line Reverse Alert) Project: p24_Aus2

 Description: Reverse the line polarity, then send a Caller ID message in the Bellcore Multiple Message
Format (containing Date&Time, Calling Number, and Calling Name). After the message
has been sent, generate ringing.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Reverse the line polarity
 2) Wait 600 msec
 3) Send FSK (Bell 202 at -13 dBm (347 mVrms unterminated))
 300 Preamble bits, 180 Mark bits
 Date & Time = 2:00 AM April 1
 Calling Number = 035551111
 Calling Name = Bill Jones
 6) Wait 500 msec
 7) Ring for 400 msec seconds at 20 Hz and 80 Vrms
 8) Wait 200 msec

ADVENT INSTRUMENTS INC.

120 AI-80 CALLER ID SIGNAL GENERATOR

 9) Ring for 400 msec seconds at 20 Hz and 80 Vrms

 No. 25 Title: China Type I (Odd Parity) Project: p25_Chn1

 Description: Ring Port A for 2 seconds, then send a FSK Caller ID message containing the date/time,
calling number, and calling name using odd parity encoding for the parameter data fields.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Ring for 2 seconds at 22 Hz and 80 Vrms
 2) Wait 500 msec
 3) Send FSK (Bell 202 at -13 dBm (600 ohms))
 300 Preamble bits, 180 Mark bits
 Date & Time = 5:25 PM on August 17
 Calling Number = 81081338
 Calling Name = Charley Heung

 No. 30 Title: Japan NTT Type I Project: p30_Ntt1

 Description: Send a Caller ID Message using the Japanese NTT Type I signaling method. This
consists of reversing the line polarity, then generating up to 6 seconds of CAR (CPE
Alerting Ring). If the CPE goes off-hook during the CAR, send the FSK data. Then wait
for the CPE to go back on-hook and ring the CPE normally.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Reverse the line polarity
 2) Wait 500 msec
 3) Generate CAR (17.5 Hz, 75 Vrms, 500 msec on, 500 msec off)
 4) If CPE does not go off-hook within 6 seconds, goto step 9
 5) If CPE goes off-hook, then...
 6) Wait 1 second
 7) Send FSK (V.23 at -13 dBm (600 ohms))
 NTT Type 1 message format
 Calling Number = 5551212
 8) Wait for CPE to go on-hook (within 7 seconds)
 9) Ring CPE at 17.5 Hz, 75 Vrms, for 1 second

 No. 40 Title: DTMF Caller ID (Line Reverse Alert) Project: p40_Mfd1

 Description: Send a DTMF based Caller ID number by first reversing the line polarity, then sending the
calling number using DTMF digits, followed by ringing.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

 Details:
 1) Reverse the line polarity
 2) Wait 300 msec
 3) Send DTMF Caller ID message
 (DTMF level of 300 mVrms, on/off time of 70 msec)
 Start code = D, Calling Number = 7132920, Stop Code = C
 4) Wait 500 msec
 5) Ring for 600 msec seconds at 20 Hz and 60 Vrms
 6) Wait 600 msec
 7) Ring for 600 msec seconds at 20 Hz and 60 Vrms

 No. 41 Title: DTMF Caller ID (Ring Burst Alert) Project: p41_Mfd2

 Description: Send a DTMF based Caller ID number by first generating a short ringing burst, then
sending the calling number using DTMF digits, followed by normal ringing.

 Usage:
 1) Connect CPE to port A
 2) Set CPE to the on-hook state
 3) Start program

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 121

 Details:
 1) Ring at 22 Hz, 60 Vrms, for 500 msec
 2) Wait 500 msec
 3) Send DTMF Caller ID message
 (DTMF level of 300 mVrms, on/off time of 70 msec)
 Start code = D, Calling Number = 7132920, Stop Code = C
 4) Wait 500 msec
 5) Ring for 600 msec seconds at 22 Hz and 60 Vrms
 6) Wait 600 msec
 7) Ring for 600 msec seconds at 22 Hz and 60 Vrms

 No. 50 Title: Dial Tone Generation Project: p50_dt

 Description: When a CPE on Port A goes off-hook, wait 200 msec and generate a dial tone signal
(350/440 Hz) until the CPE goes back on-hook.

 Usage:
 1) Connect CPE to port A
 2) Start the program
 3) Going off-hook starts the dial tone
 4) Going on-hook stops the dial tone
 5) The program will continue to run until the Stop key is pressed

 Details:
 1) Wait till the CPE goes off-hook
 2) Wait 200 msec
 3) Generate dial tone (350 and 440 Hz at 347 mVrms (unterminated))
 4) Wait till the CPE goes on-hook
 5) Stop the dial tone
 6) Repeat

 No. 51 Title: Stutter Dial Tone Generation Project: p51_sdt

 Description: When a CPE on Port A goes off-hook, wait 200 msec and generate a stutter dial tone
signal (350/440 Hz) until the CPE goes back on-hook.

 Usage:
 1) Connect CPE to port A
 2) Start the program
 3) Going off-hook starts the stutter dial tone
 4) Going on-hook stops the dial tone
 5) The program will continue to run until the Stop key is pressed

 Details:
 1) Wait till the CPE goes off-hook
 2) Wait 200 msec
 3) Generate stutter dial tone
 350 and 440 Hz at 347 mVrms (unterminated), 10 pulses, 100 msec on/off time
 after the 10th pulse, generate continuous dial tone
 4) Wait till the CPE goes on-hook
 5) Stop the dial tone
 6) Repeat

 No. 60 Title: Measure Flash Timing Project: p60_flsh

 Description: Measure and display the duration of any CPE line flashes. The program measures the
time from when the CPE went on-hook to off-hook. The time interval is displayed in
milliseconds up to a maximum of 9999 msec. While the CPE is on-hook, the display will
show “F”.

 Usage:
 1) Connect CPE to port A
 2) Start the program
 3) Flash the CPE’s hook switch (display will show “F” while on-hook)
 4) Once the CPE goes off-hook, the flash time is displayed in msec
 5) The program will continue to run until the Stop key is pressed

 Details:
 1) Zero the on-hook and off-hook timers
 2) Wait for the CPE to go on-hook
 3) Display “F”
 4) Wait till the CPE goes off-hook
 5) Display the flash time
 6) Repeat

ADVENT INSTRUMENTS INC.

122 AI-80 CALLER ID SIGNAL GENERATOR

 No. 61 Title: Measure Pulse Dialing PPS Project: p61_pps

 Description: Measure and display the average PPS reading for a CPE performing pulse dialing. The
program will calculate the average pulses per second (PPS) for any digit dialed (greater
than 1). No checking for valid make and break times is performed, only the average PPS
is reported

 Usage:
 1) Connect CPE to port A
 2) Start the program
 3) Pulse dial any digit from 0 to 9
 4) Once the dialing is complete, the average PPS is displayed.
 5) The program will continue to run until the Stop key is pressed

 Details:
 1) Wait for the CPE to go on-hook (record the timer value)
 Marks the start of the first digit
 2) Wait for up to 700 msec for the start of another digit
 3) If another digit is detected, increment the digit count displayed
 4) Once all the digits have been dialed, calculate and display the PPS
 5) Repeat

 No. 62 Title: Measure Make and Break Times Project: p62_mbr

 Description: Measure and display the average pulse dialing make time and break time. The program
will calculate the average make and break times for any digit dialed. Note that no
checking of minimum and maximum make/break times is performed. Only the average is
calculated.

 Usage:
 1) Connect CPE to port A
 2) Start the program
 3) Pulse dial any digit from 0 to 9
 4) Once the dialing is complete, the average make time is displayed for 1 second
 5) Then the break time is displayed for 1 second
 6) Additional digits can be dialed at any time
 7) The program will continue to run until the Stop key is pressed

 Details:
 1) On program start, wait for the CPE to go off-hook
 2) Wait for the CPE to go on-hook
 3) If on-hook for more than 200 msec, then restart program
 4) If on-hook for less than 200 msec, record on-hook time (break time)
 5) Record the make time when the next digit starts
 6) Repeat 3 to 5 until all digits have been received
 7) Display the break time (in msec) for 1 second
 8) Display the make time (in msec) for 1 second
 9) Repeat if more digits are dialed

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 123

 Appendix C AI-80 Error Messages & Codes

 System Power-Up Error Codes
 Once turned on, the AI-80 undergoes a number of steps to check its internal
systems and load its system level software. In the event an error is detected, it
will be displayed on the front panel. The possible error codes and there meaning
are:

 Err1 Missing System Program
 This error occurs if the AI-80 can not locate the primary system program
within the non-volatile flash memory. This can happen if the flash
memory has become corrupted. Without these files the AI-80 can not
establish normal communications with the A.I.WorkBench software. To
resolve this program, the program must be re-loaded into the flash
memory. This is done by first booting the AI-80 via a serial connection
from the host PC and then writing the missing file to the flash memory.
See sections 4-3 and 4-4 for more information.

 Err2 Missing Unit Parameter Data File
 If the parameter data file is missing or corrupted within the flash memory,
this error is displayed. This file contains various factory calibration
settings and is required for proper operations. It can be re-loaded into
the flash memory using the A.I.WorkBench software. If a copy of the
unit’s parameter file is not available, contact technical support for
assistance.

 CAL Invalid or Missing Calibration Factors
 If the parameter data file is located within the flash memory, but the
calibration factors are either missing or invalid, the display will show ‘CAL’
and flash the Start LED. The AI-80 will be suspended until the Start key
is pressed. Once the Start key is pressed, normal operation will resume;
however, the errors within the parameter data file should be corrected to
ensure proper operation

 Err3 Missing Program Boot File
 One of the last steps in the AI-80’s startup procedure is to begin
execution of the Boot program (program ID number 1). If this file is
missing from the flash memory, the error message will be displayed.
Without the Boot program the System Launcher program (which
manages the user programs and implements the user interface) will not
be started. Though the AI-80 will be able to communicate with
A.I.WorkBench software, which allows the Boot program to be re-written
into the flash memory.

ADVENT INSTRUMENTS INC.

124 AI-80 CALLER ID SIGNAL GENERATOR

 Note: During the operation of the AI-80, on additional error may be
displayed on the front panel as Err. This represents an internal stack
fault, which is fatal to the AI-80’s operation. In this case, the AI-80 will be
halted from executing any user programs and must be turned off and on
to reload its system software. If this error occurs, please contact
technical support for assistance.

 Functional Check Error Codes
 The AI-80 can be forced to execute a functional check of itself by holding down
the Pause key when the unit it first turned on. The Pause key must be held for
approximately two seconds, until a second beep is heard. Releasing the key will
then start the functional check.

 If the AI-80 reports a failure, it will display both an error code and its
measurement value that failed. The display alternates between the error code
(shown with a leading ‘F’ character) and the measurement value. Since the AI-80
is operating outside its specified limits, it should be returned for repair or
calibration.

 See Section 1, Functional Check of the AI-80 for more information on performing
the check.

 Error Code Description of Error

 F 1 Unable to verify CPE on-hook and Tel. Line on-hook state.

 F 2 Unable to verify proper tone generator output level on the telephone line in
the on-hook state with a normal polarity setting.

 F 3 Unable to verify proper tone generator output level on the telephone line in
the on-hook state with a reversed polarity settings.

 F 4 Unable to verify proper ringing level on the telephone line with a reversed
polarity setting.

 F 5 Unable to verify proper ringing level on the telephone line with a normal
polarity setting.

 F 6 Unable to detect the CPE load off-hook state.

 F 7 Unable to verify proper tone generator output level on the telephone line in
the off-hook state with normal polarity as measured by the CPE load.

 F 8 Unable to verify proper operation of the telephone line OSI condition.

 F 9 Unable to verify proper tone generator output level on the telephone line in
the off-hook state with normal polarity as measured by the Telephone
Interface.

 F 10 Unable to verify proper tone generator output level on the telephone line in
the off-hook state with reversed polarity as measured by the CPE load.

 F 11 Unable to verify residual noise level present at the telephone interface.

 F 12 Unable to verify the CPE load hook switch status in the on-hook state

 F 13 Unable to verify the CPE load hook switch status in the off-hook state

 F 14 Unable to verify the Telephone Interface transient suppression circuitry
during the reception of DTMF tones.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 125

 Program Execution Error Codes
 Programs developed with the A.I.WorkBench software execute within the AI-80’s
native language built-in interpreter. Though the compiler is responsible for
generating error free object code, it is possible that the compiler uses commands
or structures unknown to the AI-80. This can occur if the AI-80 software version
does not match the compiler’s device target setting. The error code of any
detected fault for the interpreted programs are displayed in the Processor Status
window.

 Since these are internal errors to the AI-80 and not compiler source code listings,
they should not occur. If any of the following errors are reported, please contact
technical support for assistance.

 Error Type Code Description

 Data Reference 501 Invalid reference location (must be either H,G,V, or I)
 “ 502 Invalid reference data type specified.
 “ 503 Invalid encoded reference (internal reference coding

error)
 “ 504 Invalid global/local data register location specified
 “ 505 Invalid VTP register number or VTP data type

mismatch

 VTP Error 1000 Program counter exceed program length (no program
end command detected)

 “ 1001 Unknown program command or bad command syntax
 “ 1002 Reference data type mismatch
 “ 1003 Specified label is an illegal value
 “ 1004 Can’t find the specified label
 “ 1005 VTP stack underflow (no data to pop)
 “ 1006 VTP stack overflow (no room to push)
 “ 1007 Data type mismatch with data popped from stack
 “ 1008 Bad return program address popped from the stack
 “ 1009 Illegal VTP number specified with task control

commands

 HOP 10xxxx Set HOP. Invalid HOP ID number
 “ 11xxxx Set HOP. Invalid source data address
 “ 12xxxx Set HOP. Can’t write to a read only HOP
 “ 13xxxx Set HOP. Data type mismatch
 “ 15xxxx Get HOP. Invalid HOP ID number
 “ 16xxxx Get HOP. Invalid destination data address
 “ 17xxxx Get HOP. Can’t read from a write only HOP
 “ 18xxxx Get HOP. Data type mismatch

 xxxx = HOP number passed to the Set/Get HOP

command

 Command strings used by the A.I.WorkBench software to control the AI-80 may
also return error messages due to version mismatches. The following table lists
the various error codes that can be returned by the AI-80. These error messages
should not normally appear. If they are displayed, please contact technical
support for assistance.

 Error Type Number Description
 Command
Interpreter

 100 Unknown CSI command

 “ 101 Can’t find the “=“ with the “>“ (set) command

ADVENT INSTRUMENTS INC.

126 AI-80 CALLER ID SIGNAL GENERATOR

 “ 102 No value specified with the “>“ (set) command
 “ 110 Invalid sector specified with the flash commands
 “ 111 Invalid address specified with the flash commands
 “ 112 Invalid byte count specified with the flash commands
 “ 113 No “|” character found with the flash commands
 “ 114 Invalid data with the flash write command
 “ 115 Flash device program fail with flash save command
 “ 116 Flash device erase fail with flash erase command
 “ 120 Bad VTP number specified with program commands
 “ 121 Invalid VTP program start command format
 “ 122 Can’t find file or invalid memory program run command

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 127

 Appendix D Host Serial Communications Check

 Normally, the A.I.WorkBench program will scan for any AI-80 connected to the
host PC at program start. However under some circumstances the program may
be unable to locate and communicate with an AI-80. RS-232 serial
communications can be prone to problems, due to the large number of settings
that must match between the DTE and DCE before communication can proceed.

 The AI-80 was designed to simplify many of the problems that can occur with RS-
232 serial links. Usually, the A.I.WorkBench fails to connect to the AI-80 because
of these two problems:

• Cross over serial cable was used instead of a straight-through cable.

• Communications port is unavailable or incorrectly setup within the Windows

operating system.

The AI-80 Host Serial port on the rear panel is configured as a standard 9 pin
female DCE (Data Communications Equipment) interface. The connection from
the PC can be either a 9 pin or 25 pin male DTE (Data Terminal Equipment)
interface. If a 9 pin port is available on the PC, connect the supplied 9 pin cable
between the AI-80 and the host PC. If only a 25 pin port is available, attach a 25
pin to 9 pin adapter (not supplied) to the PC, before connecting the supplied 9 pin
cable to the AI-80 and PC. Since the AI-80 is configured as a DCE (Data
Communications Equipment), a “straight-through” serial cable is required. Do not
use a “null-modem” or “cross-over” cable when connecting the PC to the AI-80.

The serial port used on the PC must be recognized and configured by the
Windows 95/98 operating system as either COM 1, COM 2, COM 3, or COM 4.

The AI-80 serial data transmission settings are fixed at 8 data bits, with no parity,
and 1 stop bit. The Request-To-Send (RTS) and Clear-To-Send (CTS) signals
have no effect on communications, as do Data-Terminal-Ready (DTR) and Data-
Set-Ready (DSR). The baud rate of the AI-80 is adjustable from a default (power
up) setting of 9600 bps to 115200 bps. If a break signal is received, the AI-80 will
immediately return the baud rate to its default value.

If the A.I.WorkBench is unable to connect with the AI-80, follow these steps in
order to help isolate where the problem is located.

1. Turn off the AI-80.
2. Turn on the AI-80 and hold down the Minus key until the display shows

four decimal points: “. . . .”. This forces the AI-80 to a baud rate of 9600
and it will echo every byte it receives from the PC.

3. Connect a serial cable from the host PC to the AI-80.
4. Run the Windows 95/98 HyperTerminal Program (or any other terminal

program).
a) This is done by pressing the START button on the Task bar, followed
by PROGRAMS > ACCESSORIES > HYPERTERMINAL.

ADVENT INSTRUMENTS INC.

128 AI-80 CALLER ID SIGNAL GENERATOR

b) Double click the “Hypertrm.exe” Icon
c) Enter a name for the connection. I.E. Test
d) Set the “Connect Using” drop-down list box to be the serial port
number connected to the AI-80. I.E. for port number 1, select “Direct to
Com 1”.
e) Press OK, and set the following in the next window:

Bits per second = 9600
Data bits = 8
Parity = None
Stop bits = 1
Flow Control = None

f) Press OK.
5. If all the settings are correct, the AI-80 will echo back all characters

typed. Thus any characters typed will be displayed in the terminal
window. The A.I.WorkBench will then be able to connect to the AI-80,
provided, no other program (like the HyperTerminal program) is using the
communications port. If no characters are displayed, then check the
following...
a) If the COMM LED illuminates on the AI-80 when characters are typed,
then the correct port has been selected. Verify that the baud rate, parity,
and stop bits are correct. Use the [FILE] [PROPERTIES] menu
command to change the terminal settings.
b) If the COMM LED does not illuminate, then repeat using a different
port number. Use the [FILE] [PROPERTIES] menu command to change
the terminal settings.
c) If none of the ports work, verify that the cable is a straight-through
type and not a cross-over cable. Also verify that the communications port
is reported as working properly in the Windows Control Panel.

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 129

Appendix E General Specifications

AI-80 Telephone Line Interface
Tone Generator

Output Level *1 0 to 2.0 Vrms +/- 0.5 dB
Frequency Range 50 Hz to 10 kHz
Flatness 100 Hz to 5 kHz +/- 0.75 dB
THD+N 0.09% C-message (1 kHz)
Harmonic Distortion > 65 dBc
Frequency Accuracy 0.015%

FSK Generator
Output Level *1 0 to 2.0 Vrms +/- 0.5 dB
Flatness +/- 0.75 dB
Mark & Space Frequency 100 Hz to 5 kHz
Frequency Accuracy 0.015%
Baud Rate 100 Hz to 5 kHz
Baud Rate Accuracy 0.015%

Noise Generator
Output Level *1 0 to 1.0 Vrms +/- 0.75 dB

Ring Generator
Output Level 0 Vrms to 80 Vrms.
Frequency Range 10 Hz to 100 Hz
Flatness +/- 0.3 dB
THD+N 0.1% (22 Hz)
Frequency Accuracy 0.015%
Ringer Load 5 REN

Telephone Line
Output Impedance 600 or 900 ohms +/- 5%

(200 Hz to 4 kHz)
Loop Voltage 48 Volts +/- 2V
Loop Current 26 or 45 mA +/- 15%

Level Meter
Level Accuracy +/- 0.3 dB @ 1 kHz
Frequency Range 10 Hz to 10 kHz
Flatness 100 Hz to 5 kHz +/- 0.2 dB
Maximum Input 4.0 Vrms
Residual Noise <-60 dBmC

*1 Maximum output level with an unterminated or terminated telephone line

AI-80 CPE Load Interface
DC Characteristics

On-hook Impedance > 1 Meg-ohm (0 to 200 Volts)
Off-hook Impedance 230 ohms +/- 10% (at 26 mA)
Maximum Loop Current 100 mA

ADVENT INSTRUMENTS INC.

130 AI-80 CALLER ID SIGNAL GENERATOR

AC Characteristics
On-hook Impedance > 0.5 Meg-ohm

(0 to 200 Volts, 10 Hz to 5 kHz)
Off-hook Impedance 600 ohms +/- 10% (1 kHz)

Level Meter
Level Accuracy +/- 0.3 dB @ 1 kHz
Frequency Range 10 Hz to 10 kHz
Flatness 100 Hz to 5 kHz +/- 0.5 dB
Maximum Input 4.0 Vrms (normal gain)

150 Vrms (low gain)
Residual Noise <-60 dBmC

AI-80 Optional Complex & External Impedance
Telephone Line Impedance

Complex #1 *2 220 ohm + (820 ohm || 115 nF) +/- 5%
Complex #2 *2 270 ohm + (750 ohm || 150 nF) +/- 5%
Complex #3 *2 370 ohm + (620 ohm || 310 nF) +/- 5%

*2 Only one complex impedance can be installed in the AI-80 and it must be
installed at the time of order.

AI-80 Optional I/O Module
Analog Output

Output Level *3 0 to 2.0 Vrms +/- 0.75 dB
Output Impedance 600 ohms +/- 5%
THD+N 0.09% C-message (1 kHz)
Harmonic Distortion > 65 dBc
Signal Source Internal Tone Generators, or

Telephone Interface Monitor, or
CPE Load Monitor

Analog Input
Maximum Input 0 to 2.0 Vrms
Input Impedance 100 kohms +/- 10%
Level Accuracy +/- 0.75 dB
Residual Noise <-60 dBmC

DC Voltage Measurement
Max. Differential Input +/-200 VDC
Max. Common Mode +/-200 VDC (w.r.t. earth ground)
Input Impedance > 1 Meg Ohm
Accuracy +/- 1% (0.2 to 200 Volts)
CMRR (DC) > 60 dB

Analog Input Channels *4

Input Voltage Range -10.0 Volts to +10.0 Volts
Input Impedance > 100 kOhm
Accuracy +/- 1% (1.0 to 10.0 Volts)

Digital I/O
Logic Levels 5 Volt TTL Compatible
Fixed Digital Outputs 8 bits
Fixed Digital Inputs 8 bits
Digital Input or Output 7 bits
Timer Output (PWM mode) 10 bit, 1.8 kHz rep. rate
Pulse Timing Measure *5 0 to 100 s +/- 0.2 msec

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 131

 +ve pulse, -ve pulse,
 rising or falling edge

Pulse Counter Input *5 0 to 500 kHz
 Gating Time 0.001 to 100 s +/- 0.2 msec
Pulse Generator 0.001 to 100 s +/- 0.2 msec
Async Serial Comm *5 1200, 2400, 9600, 19200 baud

8 data bits no parity,
7 data bits odd parity, or
7 data bits even parity

*3 Level accuracy w.r.t. internal tone generators
*4 Analog input channels shared with digital inputs
*5 Function shared with digital input/output channels

ADVENT INSTRUMENTS INC.

AI-80 CALLER ID SIGNAL GENERATOR 133

Appendix F Technical Support

If you encounter problems while using the AI-80 or the A.I. WorkBench software,
please contact us so that we can provide assistance. You may reach us in any
one of the following manners:

Email: techsupport@adventinst.com

In North America:

Tel: (604) 944-4298
Fax: (604) 944-7488

Mail: Advent Instruments Inc.
111 - 1515 Broadway Street
Port Coquitlam, BC V3C6M2
Canada

In Asia:

Tel: (852) 8108-1338
Fax: (852) 2900-9338

Mail: Advent Instruments (Asia) Limited
Unit No. 7, 9/F, Shatin Galleria
18 - 24 Shan Mei Street
Fotan, Shatin, N.T.,
Hong Kong

Software updates and future releases for the AI-80 and A.I.WorkBench software
are available on our website at: www.adventinst.com

