

Central Office
Line Simulator

AI-7280

DLL Programmers Guide

Advent Instruments Inc.

Release 4.6

Copyright 2012 - Advent Instruments Inc. All rights reserved.

Printed in Canada

Advent Instruments Inc.
111 - 1515 Broadway Street
Port Coquitlam, BC, V3C6M2
Canada

Internet: techsupport@adventinstruments.com
 sales@adventinstruments.com

Web Site: http://www.adventinstruments.com

Telephone: (604) 944-4298
Fax : (604) 944-7488

Advent Instruments Inc. Getting Started

Contents

1 Getting Started 1
1.1 Introduction 1
1.2 What Has Changed in Rev 4.x 2
1.3 Minimum System Requirements 3
1.4 Installing the DLL Developer’s Kit 3
1.5 Connecting to the PC 3
1.6 Files Included in the Developer’s Kit 4
1.7 Examples 5

2 Low Level DLL Function Reference 5
2.1 DLL Function Usage 5
2.2 System Functions 8
2.3 Telephone Interface Functions 14
2.4 Routing Functions 23
2.5 Measurement Functions 27
2.6 Tone Generation Functions 32
2.7 AM Modulation Functions 38
2.8 Ringing Functions 41
2.9 Echo Functions 46
2.10 FSK Generator Functions 49
2.11 DTMF/MF Generator Functions 63
2.12 FSK Decoder Functions 69
2.13 DTMF Detector Functions 73
2.14 Capture and Playback Functions 78
2.15 Digital I/O Functions 87
2.16 Noise Generator Functions 90
2.17 Metering Pulse Functions 92
2.18 Miscellaneous Functions 96
2.19 Script and Command Functions 97
2.20 Pulse Dialing Functions 102

3 CallerID Functions 104
3.1 Physical Layer Function Calls 104
3.2 CallerID Timing/Signalling Functions 108
3.3 CallerID Message Functions 111
3.4 CallerID Signalling Types 123
3.5 CallerID Transmission Timing Fuctions 124

4 SMS Functions 125
4.1 Physical Layer/Timing Functions 125
4.2 SMS Message TX/RX Functions 126

5 Other Functions 137
5.1 Global Script Program Functions 137

AI-7280 DLL Programmers Guide i

Getting Started Advent Instruments Inc.

6 Error Codes 142
6.1 Communication Errors 143
6.2 Resource Conflict Errors 144
6.3 Parameter Value Errors 144
6.4 Internal System Errors 146

7 DLL Demo Program 147

8 Using Scripting Features 151
8.1 Generating Scripts with AI-Workbench 151
8.2 Designing and Running Scripts 153
8.3 Rules for User Scripts 154

9 Revision History 156

10 Support 159

11 Appendix A: USB Driver Installation 160

AI-7280 DLL Programmers Guide ii

Advent Instruments Inc. Getting Started

1 Getting Started

1.1 Introduction

The AI-7280 Dynamic Link Library (DLL) allows software developers to integrate the
functionality of the central office line simulator into a software application written for
Microsoft Windows. The functions included in the DLL permit the user application to
connect to and control one or more AI-7280 units (connected via serial port or USB)
from a common DLL interface.

This manual describes the AI-7280 DLL developer kit that contains all the files required
to start using and developing applications with the DLL. The DLL developer kit contains
a copy of the Dynamic Link Library (DLL), a demonstration program, examples, and the
USB drivers for the AI-7280.

The DLL demonstration program allows the user to experiment with each of the DLL
functions through a graphical user interface without writing a line of code. Several code
examples are also included which give examples of

• Generating different formats of Type I and Type II CallerID, with

o Noise impairments

o Intentionally corrupted checksum

• Sending a simple SMS sequence

• Uploading an playing back waveforms on the AI-7280

• Genearting common call-progress and network tones with cadences.

• Genearating distinctive ringing

• Simulating a simple North American Central Office.

• How to use some of the advanced features of the AI-7280 through the DLL
functions including scripting.

AI-7280 DLL Programmers Guide 1

Getting Started Advent Instruments Inc.

1.2 What Has Changed in Rev 4.x
Rev 4.0

• Added functions Wait_For_PulseDial and Get_PulseDial_Stats to make pulse
dialing detection simpler

• Added Create_OSI function so that Open Switching Intervals (OSIs) can be
generated with more precise timing

• Added the Wait_For_LineFlash function to make the detection of a line flash
simpler

Rev 4.1

• Restricted the range of the MaxTime parameter in the Wait_For_HookState and
Wait_For_DTMF function to a maximum of 100 seconds to prevent internal
timeout errors.

• Fixed minor bug in Get_MeterPulseCount which would erroneously return a
“parameter out of range” error.

Rev 4.1b

• Updated documentation to highlight .Net issues

• Added more examples for VB.net and restructured examples directory

Rev 4.2

• Added timing function which allow the user to determine when DTAS and FSK
were sent during a CallerID sequence

Rev 4.4

• Fixed initialization bug which prevented connection to AI-7280 when serial
number was specified on USB

• Resolved timing issue which could cause communication errors on slower PCs
connecting using COM port

• Slight change in directory structure for installed program

• Added a complete Visual Studio 6 C++ project example complete with updated
examples

• Minimum system requirements now require Windows 2000 SP4 or greater

Rev 4.5

• Added Set_ BNCOutGain function

• Fixed minor documentation errors

Rev 4.6

• Removed limit checking on TelintFeed Voltage and Current limits to support
updated firmware and extended operation range.

AI-7280 DLL Programmers Guide 2

Advent Instruments Inc. Getting Started

1.3 Minimum System Requirements

Computer/Processor: PC with Pentium 200 MHz or greater

Memory: 256 MB of RAM

Hard Disk Space: 10 MB

Operating System: Microsoft Windows XP SP2 or greater

1.4 Installing the DLL Developer’s Kit

The AI-7280 interface DLL and all related programs, documentation, and sample code
can be installed on your PC by executing the file 7280DLLKit.exe. This file is a self-
extracting setup utility that will install the files into a directory of your choice. Follow the
on screen instructions and the setup program will guide you through the installation
process. Once the installation is complete you may install the USB drivers (see following
section).

The DLL Developer’s Kit will:

• Install the latest version of the DLL into the windows system32 directory

• Install the demonstration program, manual, drivers, and examples into
C:\Program Files\Advent\AI-7280 DLL Kit (by default)

1.5 Connecting to the PC

The AI-7280 can be connected to the PC by either its RS-232 port or USB 2.0 compliant
full speed (12 Mbit/second) port. Both connectors are present on the rear panel of the
unit.

If using the TRsSim software or the Windows DLL to control the AI-7280, the USB
connection is preferred because of the higher data rate. It incurs less latency when
sending commands and data to the AI-7280. However either connection method will
operate with the TRsSim software or the Windows DLL.

1.5.1 USB Driver
The proper drivers must be installed before a USB connection can be established between
the AI-7280 and the PC. The WHQL USB driver files are automatically installed with
the DLL installation package described above and no further steps should be required.

For detailed step-by-step instructions on installing the driver, see Appendix A: USB
Driver Installation. The following is a summary of the installation procedure described in
the Appendix.

1. Download the USB driver installation package from our website or from the
CDrom.

AI-7280 DLL Programmers Guide 3

Getting Started Advent Instruments Inc.

2. Double click on the self extracting installer. This normally requires using the
administrator privileges in Vista and Windows 7

3. The installer will decompress the files and prompt you through the steps to
install the driver files.

5. A message should be displayed indicating the successful installation of the two
driver files.

1.5.2 RS-232
The rear panel 9 pin connector of the AI-7280 is configured as a DCE (Data
Communications Equipment) port. As the PC is normally configured as a DTE (Data
Terminal Equipment) port, a straight-though cable is required for the connection. Do not
use a cross-over cable between the AI-7280 and the PC serial port.

The AI-7280's RS-232 data transmissions are fixed at 8 data bits with 1 stop bit and no
parity. The baud rate is adjustable from a default (at power up) setting of 9600 bps to a
maximum of 115200 bps. If a break signal is detected by the AI-7280, it will reset its
baud rate to 9600 bps. Only three signals are required for communication. These are Tx
Data, Rx Data, and Ground. The Request-to-Send (RTS) and Clear-To-Send (CTS)
signals have no effect on communication. On the AI-7280's 9 pin RS-232 connector, the
Data-Terminal-Ready (DTR) pin is directly wired to the Data-Set-Ready (DSR) pin. As
such, if the PC asserts DTR, it can read back that DSR is asserted as well.

1.6 Files Included in the Developer’s Kit
By default the developers kit installs into C:\Progam Files\Advent\AI-7280 DLL Kit. The
following sections describe the contents of the installation.

Directory Description

[Installation Directory]

AI-7280 DLL Demo Program – This is a small
executable that demonstrates each of the DLL function
calls through a simple graphical interface.

.\DLL 7280 DLL – This directory contains a copy of the AI-
7280 DLL and the .lib file required to import this DLL
into Microsoft C++ compilers

.\Manual DLL Programmers Guide – This directory will
contain the latest version of this document.

.\Drivers USB Drivers – This directory contains a copy of the AI-
7280 USB drivers which can be installed through the
procedure specified in Section 1.5

.\Examples DLL Programming Examples – This directory
contains several examples of how to use this DLL in
several different programming environments

AI-7280 DLL Programmers Guide 4

Advent Instruments Inc. Low Level DLL Function Reference

1.7 Examples
We have included several simple examples of how to program using the DLL in the
Examples sub-directory of the installation path. These examples include programming
examples in C++, VB6, VB.Net, and Excel (VBA).

These examples collectively demonstrate how to:

• Setup and send TypeI and Type II CallerID messages using multiple signaling
types

• Send SMS sequences

• Send DTMF

• Measure Flash timging

• Simulate a simple Central Office(CO)

• Playback waveforms on the AI-7280

If you require assistance with your particular development environment please contact
technical support and we will be happy to assist you.

2 Low Level DLL Function
Reference

2.1 DLL Function Usage
The AI-7280 DLL is a collection of functions that allows the calling software to control
multiple AI-7280 devices through a common interface. All of the DLL functions return a
standard error code that indicating if any errors occurred during the function call. See the
section on Error Codes.

Before any AI-7280 device functions can be called, communications with an AI-7280
device must be established using the Open_Device() function. This function returns a
"deviceid" handle that is used to reference the connected device for all future function
calls. Additional calls to the Open_Device function can open connections to other AI-
7280 devices and the function will return a unique "deviceid" for each new device.

Once communications are established, the AI-7280 units can be controlled with the
interface functions using the "deviceid" parameter to reference the device. Finally, once
all the tasks are complete, communications can be terminated using the Close_Device
function.

AI-7280 DLL Programmers Guide 5

Low Level DLL Function Reference Advent Instruments Inc.

2.1.1 Data Type Summary

The AI-7280 interface DLL accepts and returns several different data types. They are
summarized below:

C Data Type Description / Memory Width

long 32-bit integer value
float 32-bit floating point value

char [] NULL (0) terminated string of characters. Each character is
stored as one byte ASCII code. This data type is passed as the
32-bit address of the first byte in the string. All strings must be
NULL (0) terminated and contain only printable ASCII
characters (32 and above).

float [] 32-bit array of floating point values. These values are stored in
consecutive locations in memory. This data type is passed as a
32-bit address of the first element of the array.

long [] 32-bit array of integer values. These values are stored in
consecutive locations in memory. This data type is passed as a
32-bit address of the first element of the array.

AI-7280 DLL Programmers Guide 6

Advent Instruments Inc. Low Level DLL Function Reference

2.1.2 Language Compatibility
It is important to note that different programming languages represent fundamental data
types with different resolutions. The following table outlines a few subtle differences

Data Type C/C++ Visual Studio 6 .Net

32-bit Integer long Long Integer
32-bit floating point float Single Single

IMPORTANT NOTE FOR .Net Programmers:

Micorosft .Net defines a 32-bit integer value as an “Integer” not “Long” as it was in
Visual Studio 6. For .net programs you will have to declare all the DLL prototypes
with Integer parameters for your project to work correctly! The example file
AI7280DRV.vb has the appropriate adjustments made for VB.net projects.

Note: Special care must be taken when using string arguments for functions. See the
function definition as to the required initialization size before calling the function. Also,
the DLL functions will not write any characters past the first NULL in the output string.
Therefore you must initialize each string to have a NULL only at the end of the string.
For example:

char Response[200];

memset(Response,’ ‘,sizeof(Response)-1); // fill the string with spaces

Response[sizeof(Response)-1]=’\0’; // NULL terminate the string

Send_TextCommand(deviceid, “?HS2”,1,Response); // return the string

2.1.3 Thread Safety
The AI-7280 DLL is not thread safe. All calls to the AI-7280 DLL must be from the
same thread.

AI-7280 DLL Programmers Guide 7

Low Level DLL Function Reference Advent Instruments Inc.

2.2 System Functions

2.2.1 Open_Device

Description:
The Open_Device function initializes communications with an AI-7280 device and
returns a deviceid identifier that is used to reference the device in later function calls.
The Open_Device function can be used to connect to devices on a COMM port or USB
depending on the value of the port parameter. If the serial number is specified then this
function will only connect to the unit with the matching serial number. If the serial
number is not specified (zero length string) then this function will connect to the first
AI-7280 unit found on the specified communications channel.

Function Prototype:

long Open_Device(long * deviceid, long port, char serial[])

Function Parameters:

deviceid The deviceid parameter returns a device communications handle,
which is used to reference this device in all further function calls.

port The port parameter specifies which communication channel to use
to connect to the AI-7280 device. The acceptable values for the
port parameter are shown in the table below

Port Value Communication Channel
0 USB
1 COM1
2 COM2
3 COM3
4 COM4

serial The serial parameter is a NULL terminated string. If this string is

zero length then the serial parameter is ignored and this function
connects to the first AI-7280 device located on the
communications channel. If the string is non-zero length, it should
contain an 8-character serial number of the AI-7280 device to
connect to. This string must be in the format “SN12XXXX”
(where X represents a digit between 0 and 9). When the serial
number is specified, this function will only connect to a unit with
the matching serial number.

AI-7280 DLL Programmers Guide 8

Advent Instruments Inc. Low Level DLL Function Reference

2.2.2 Close_Device

Description:

The Close_Device function terminates communications with an AI-7280 device and
releases the associated communications resources. Close_Device can only close a
communications channel that was opened with Open_Device. When the Close_Device
function is called the AI-7280 is reset to clear all system settings back to their defaults.

Function Prototype:

long CloseDevice(long *deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to terminate
communications with. This value must be a valid deviceid returned
by a call to Open_Device.

2.2.3 Get_DLLVer

Description:

The Get_DLLVer function returns the major and minor revision codes for the DLL.
These values are used to track changes in the DLL software. For example if dllmajor=1
and dllminor=23 then the DLL is version 1.23

Function Prototype:

long Get_DLLVer(long *dllmajor, long *dllminor)

Function Parameters:

dllmajor The dllmajor parameter returns the value of the major revision
code for this DLL.

dllminor The dllmajor parameter returns the value of the minor revision
code for this DLL.

AI-7280 DLL Programmers Guide 9

Low Level DLL Function Reference Advent Instruments Inc.

2.2.4 Get_ErrorDesc

Description:

The Get_ErrorDesc function translates the error codes returned by the functions in this
DLL into a string containing a description of the error that occurred. See the Error
Codes section for more information on the possible error codes that can be returned
from the DLL.

Function Prototype:

long Get_ErrorDesc (long errorcode, char description[200])

Function Parameters:

errorcode The errorcode parameter should contain the value of an error code
returned from one of the functions in this DLL.

description The description parameter returns a NULL terminated string that
will be loaded with the error code description. Note: Before
calling this function insure that this string is allocated to be at
least 200 characters long.

2.2.5 Get_DeviceVer

Description:

The Get_DeviceVer returns the AI-7280 hardware and software version information
and serial number.

Function Prototype:

long GetDeviceVer(long device, char softversion[64], char hardversion[64] ,
char serialnum[64], char unitid[64])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

softversion The softversion parameter is a NULL terminated string that will be
loaded with the software version string when this function is
called. Note: Before calling this function insure that the
description string is allocated to be at least 64 characters long.
See Data Type Summary for initialization details.

hardversion The hardversion parameter is a NULL terminated string that will
be loaded with the hardware version string from the unit when this
function is called. Note: Before calling this function insure that
the description string is allocated to be at least 64 characters
long. See Data Type Summary for initialization details.

serialnum The serialnum parameter is a NULL terminated string that will be

AI-7280 DLL Programmers Guide 10

Advent Instruments Inc. Low Level DLL Function Reference

loaded with the serial number string when this function is called.
Note: Before calling this function insure that the description
string is allocated to be at least 64 characters long. See Data
Type Summary for initialization details.

unitid The unitid parameter is a NULL terminated string that will be
loaded with the unit identification string for the AI-7280 device.
Note: Before calling this function insure that the unitid string
is allocated to be at least 64 characters long. See Data Type
Summary for initialization details.

2.2.6 Set_Timer

Description:

The Set_Timer function sets the current time value of the slow timer in the AI-7280.
The slow timer is used internally in the AI-7280 for timing most signals on the
telephone line. Note: this timer is reset to zero when Open_Device is called.

Function Prototype:

long Set_Timer(long deviceid, float time)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

time The time parameter specifies the time value (in seconds) to load
into the slow timer.

2.2.7 Get_Timer

Description:

The Get_Timer function returns the value of the slow timer in the AI-7280 in seconds.

Function Prototype:

long Get_Timer(long deviceid, float * time)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

time The time parameter returns the value of the slow timer in the AI-
7280 in that location.

AI-7280 DLL Programmers Guide 11

Low Level DLL Function Reference Advent Instruments Inc.

2.2.8 Waitms

Description:

The Waitms function pauses for the specified number of milliseconds. Note: this
function uses the internal windows timer as a timing reference. Therefore, timing
resolution may vary depending on computer hardware and the version of Windows.

Function Prototype:

long Waitms (long milliseconds)

Function Parameters:

milliseconds The milliseconds parameter specifies the number of milliseconds
for this function to wait. Note: the minimum resolution of the wait
may vary depending on the computer hardware and the version of
Windows.

2.2.9 Get_Error

Description:

The Get_Error function returns any error conditions internal to the AI-7280. If the
errorcode value returned is non-zero then an error has been detected in the AI-7280.
Multiple error codes can be read out through multiple calls to the Get_Error function. If
a zero value is returned then it indicates there are no further error conditions present.
See the AI-7280 documentation for details on these error codes.

Function Prototype:

long Get_Error(long deviceid, long * errorcode)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

errorcode The errorcode parameter returns an AI-7280 internal error code. If
this value is non-zero it indicates that an error has been detected.
See the AI-7280 documentation for more details.

AI-7280 DLL Programmers Guide 12

Advent Instruments Inc. Low Level DLL Function Reference

2.2.10 Get_NumUSBDevices

Description:

The Get_NumUSBDevices function returns the number of AI-7280 devices connected
to the PC using the USB connection. The serial number of each of these units can be
read using the Get_USBSerial function. Note: This function doesn’t count devices that
are in use. If a communications are already established using this DLL or any other
program then the device is not included in the count.

Function Prototype:

long Get_NumUSBDevices(long *numdevices)

Function Parameters:

numdevices The numdevices parameter returns the number of AI-7280 devices
connected via USB.

2.2.11 Get_USBSerial

Description:

The Get_USBSerial function returns the serial number of an AI-7280 unit connected to
the USB bus.

Function Prototype:

long Get_USBSerial(long devicenum, char serial[9])

Function Parameters:

devicenum The devicenum parameter indexes which device’s serial number to
retrieve. The devicenum should range from 1 to numdevices where
numdevices is the number of devices connected on the USB bus.

serial The serial parameter is NULL terminated string that is loaded with
the serial number of the AI-7280 device when the function is
called. Note: Before calling this function insure that the serial
string is allocated to be at least 64 characters long. See Data
Type Summary for initialization details.

AI-7280 DLL Programmers Guide 13

Low Level DLL Function Reference Advent Instruments Inc.

2.3 Telephone Interface Functions

2.3.1 Set_TelIntFeed

Description:

The Set_TelIntFeed sets the DC feed parameters for the telephone line interface. The
voltage parameter sets the nominal on-hook DC feed voltage (in units of Vdc). The
current parameter sets the off-hook loop current (in mA) when the unit is in constant
current mode. If the isvoltfeedmode parameter is set to a non-zero value then the unit is
configured in constant voltage feed mode and only the resistance of the telephone
interface and the CPE load limits the DC loop current.

Function Prototype:

long Set_TelIntFeed(long deviceid, float voltage, float current, long
isvoltfeedmode)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

voltage The voltage parameter sets the nominal on-hook DC line voltage
for the telephone line interface (in units of Vdc)

current The current parameter sets the off-hook loop current (in units of
mA) when the telephone line is in constant current mode.

isvoltfeedmode The isvoltfeedmode parameter specifies the DC feed mode of the
telephone line interface. If the isvoltfeedmode parameter is set to 0
then the telephone line interface will operate in constant current
mode. If this parameter is non-zero then the telephone line
interface will operate in constant voltage mode.

2.3.2 Set_TelIntImped

Description:

The Set_TelIntImped function sets the AC impedance parameters for the telephone line
interface. The impedance parameter sets the AC output impedance of the telephone line
interface and the balance parameter sets the AC load impedance setting for the trans-
hybrid balance network.

Function Prototype:

long Set_TelIntImped(long deviceid, long impedance, long balance)

AI-7280 DLL Programmers Guide 14

Advent Instruments Inc. Low Level DLL Function Reference

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

impedance The impedance parameter sets the AC output impedance of the
telephone line interface. The allowed values are listed in the table
below

impedance setting AC Output Impdance
0 600Ω
1 900Ω
2 TBR-21
3 Optional Impedance

balance The balance parameter sets the AC load impedance setting for the
trans-hybrid balance network. This setting should be set to match
the impedance of a load on the telephone line to allow the best
performance of the hybrid network. The balance parameter accepts
the same values as the impedance parameter.

2.3.3 Set_TelIntPolarity

Description:

The Set_TelIntPolarity function sets the line polarity for the telephone line interface. If
the value of the isreversed parameter is non-zero then the telephone line is set to
reversed polarity. If the isreversed parameter is zero then the telephone line is set to
normal polarity.

Function Prototype:

long Set_TelIntPolarity(long deviceid, long isreversed)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

isreversed The isreversed parameter sets the telephone line polarity. A zero
value sets the telephone line interface to normal polarity. A non-
zero value sets the telephone interface to reversed polarity.

AI-7280 DLL Programmers Guide 15

Low Level DLL Function Reference Advent Instruments Inc.

2.3.4 Set_TelIntDisconnect

Description:

The Set_TelIntDisconnect function disconnects or connects the telephone line interface
circuitry from the telephone line connector on the front of the AI-7280. If the
disconnect parameter is zero then the telephone line interface is connected to the
telephone jack. If the parameter is non-zero then the line is disconnected. Note: signals
can still be measured at the telephone jack when the telephone line interface is
disconnected.

Function Prototype:

long Set_TelIntDisconnect(long deviceid, long disconnect)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

disconnect The disconnect parameter specifies whether to connect or
disconnect the telephone line interface to the telephone jack on the
front of the AI-7280. If the value is zero then the telephone line
interface is connected. If the value is non-zero then the telephone
interface circuitry is disconnected from the telephone jack.

2.3.5 Set_TelIntMeasPoint

Description:

The Set_TelIntMeasPoint function sets the source and measurement range of the
telephone line measurements. This function also sets the speed of the filter on the DC
voltage and current measurements.

Function Prototype:

long Set_TelIntMeasPoint(long deviceid, long measpoint, long measrange,
long dcspeed)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

measpoint The measpoint parameter specifies the source of the telephone line
measurements. If measpoint is zero then the measurements are
made on the inner pair of the telephone jack (connected to the
telephone line interface). If measpoint is non-zero then the
measurements are made on the outside pair of the telephone jack.

AI-7280 DLL Programmers Guide 16

Advent Instruments Inc. Low Level DLL Function Reference

measrange The measrange parameter specifies the measurement range for the
telephone line measurements. If measrange is zero then high gain
is selected and the maximum signal level is 5Vrms before clipping
occurs. If the measrange value is non-zero then low gain is
selected for measuring large voltage signals such as ringing.

dcspeed The dcspeed parameter specifies the speed of the filtering
performed on the DC line voltage and current measurements. The
values for dcspeed and the associated filter speed are shown in the
table below. Note: the rejection specified refers to the filters AC
signal rejection performance at a specified frequency.

dcspeed Filter Accuracy/Speed
0 No filtering (instantaneous samples)
1 40dB rejection at 100Hz (0.5 second

settling time)
2 40dB rejection at 30Hz (2 second settling

time)
3 40dB rejection at 10Hz (5.5 second settling

time)

2.3.6 Get_TelIntHookStatus

Description:

The Get_TelIntHookStatus function returns the hook switch status of the AI-7280 and
also indicates whether or not the unit has gone into protected mode due to high
unbalanced current. When the AI-7280 goes into protected mode it will generate an
internal error code and the display will change to show this error (indicated by the
flashing status LED). To clear the display and return the LEDs to normal operation use
the Get_Error function to read the error code and the display will reset and resume
displaying the telephone line status.

Function Prototype:

long Get_TelIntHookStatus(long deviceid, long *offhook, long *isunbalanced)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

offhook The offhook value returns the hook switch detection status. The
offhook parameter will be set to a non-zero value if the AI-7280 is
off hook and a zero value if the unit is on-hook.

isunbalanced The isunbalanced parameter returns a non-zero value if the AI-
7280 has entered a protected mode due to high unbalanced current
flow. If the isunbalanced parameter is zero then the AI-7280 is
operating normally.

AI-7280 DLL Programmers Guide 17

Low Level DLL Function Reference Advent Instruments Inc.

2.3.7 Ramp_TelIntVoltage

Description:

The Ramp_TelIntVoltage function ramps the DC line voltage from the current voltage
setting to a specified destination voltage at a given slew rate. The voltage can either
ramp to a destination voltage of the same polarity, or slew to a destination voltage of
opposite polarity.

Function Prototype:

long Ramp_TelIntVoltage(long deviceid, float vdestination, float ramprate,
long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

vdestination The vdestination parameter specifies the destination voltage (in
Vdc) that the voltage will ramp to. If the voltage is positive then
the voltage ramps to the destination without changing polarity. If
the voltage is negative then the line voltage will ramp down to 0V
and continue to the destination voltage of the opposite polarity of
the starting voltage.

ramprate The ramprate parameter specifies the slew rate for the ramp in
V/ms. This parameter can be between the values 0-20. Positive
values cause the voltage to ramp at the desired ramp rate. A zero
value causes no-change or causes a ramp in progress to stop.

wait The wait parameter specifies whether the DLL should wait for the
ramp to complete before returning control to the calling program.
If wait is non-zero then the DLL waits for the ramp to complete
before returning control to the calling program. If zero then the
function returns control immediately after initiating the ramp.

2.3.8 Set_TelIntHookThreshold

AI-7280 DLL Programmers Guide 18

Advent Instruments Inc. Low Level DLL Function Reference

Description:

The Set_TelIntHookThreshold function sets the current threshold used for hook switch
detection in mA. Any loop currents excepting this threshold will cause the AI-7280 to
go off hook and begin regulating the DC loop current (in constant current mode).

Function Prototype:

long Set_TelIntHookThreshold(long deviceid, float hookthresh)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

hookthresh The hookthresh parameter sets the current threshold (in mA) for
hook switch detection. This parameter can range from 5 to 25mA.

2.3.9 Get_TimeStamps

Description:

The Get_TimeStamps function gets the time stamp of the last on-hook and off-hook
transitions in the telephone line state.

Function Prototype:

long Get_TimeStamps(long deviceid, float *onhooktime, float *offhooktime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

onhooktime The onhooktime returns the value to the timestamp (in seconds) of
the last transition in line state from off to on hook. This value can
also be set using the Set_OnHookTime function to assist in timing
detection.

offhooktime The offhooktime returns the value to the timestamp (in seconds) of
the last transition in line state from on to off hook. This value can
also be set using the Set_OffHookTime function to assist in timing
detection.

2.3.10 Set_OnHookTime

Description:

AI-7280 DLL Programmers Guide 19

Low Level DLL Function Reference Advent Instruments Inc.

The Set_OnHookTime function sets the onhooktime value - that can be read using the
Get_TimeStamps function. The onhooktime is the timestamp (in seconds) of the last
time the telephone line state transitioned from off-hook to on-hook. This function is
intended to assist in detecting new on-hook transistions. For example: If set the
onhooktime to 0 then when you read back a non-zero value it indicates that a new on-
hook transition has occurred.

Function Prototype:

long Set_OnHookTime(long deviceid, float onhooktime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

onhooktime The onhooktime parameter specifies the time value (in seconds) to
write into the onhooktime property of the AI-7280.

2.3.11 Set_OffHookTime

Description:

The Set_OffHookTime function sets the offhooktime value that can be read using the
Get_TimeStamps function. The offhooktime is the timestamp of the last time the
telephone line state transitioned from on-hook to off-hook. This function is intended to
assist in detecting new off-hook transitions. For example: If set the offhooktime to 0
then when you read back a non-zero value it indicates that a new off-hook transition
has occurred)

Function Prototype:

long Set_OffHookTime(long deviceid, float offhooktime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

offhooktime The offhooktime parameter specifies the time value (in seconds) to
write into the offhooktime property in the AI-7280.

2.3.12 Wait_For_HookState

Description:

This function waits for a specified amount of time for the hook switch state to change

AI-7280 DLL Programmers Guide 20

Advent Instruments Inc. Low Level DLL Function Reference

to the desired state. If the hookswitch changes to the desired state within the timeout
then IsChanged will return a non-zero value. If the telephone line interface is already in
the desired state when this function is called it will return immediately.

Function Prototype:

long Wait_For_HookState (long deviceid, long MaxTime, long
ExpectedHookState, long *IsChanged)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to
communicate with. This deviceid must be returned by the
Open_Device function.

MaxTime This parameter specifies the maximum time (ms) to wait for the
hookswitch to change states. This value may set to positive
values up to 100,000 ms (100 seconds).

ExpectedHookState This parameter specifies the expected hook state. Pass 0 for on-
hook, and the value 1 for off hook

IsChanged When the function completes this value will be non-zero if the
hook switch state changed to the desired state. If the function
timed out then this value will be set to zero.

2.3.13 Wait_For_LineFlash

Description:

This function waits for a specified amount of time for a line flash to occur and returns
the timing of the line flash (if detected). The line flash must satisfy the minimum and
maximum duration requirements and must start before MaxTime has expired. The line
state must be off-hook before this function is called. If the phone line is on-hook this
function will return immediately.

Function Prototype:

long Wait_For_LineFlash (long deviceid, long MaxTime , long MinDuration,
long MaxDuration, long *Detected, float *StartTime, float *StopTime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

MaxTime This parameter specifies the maximum time (ms) to wait for the
line flash to start

MinDuration This parameters specifies the minimum duration (ms) requirement
for a valid line flash

AI-7280 DLL Programmers Guide 21

Low Level DLL Function Reference Advent Instruments Inc.

MaxDuration This parameter specifies the maximum duration (ms) requirement

for a valid line flash.

Detected If a valid line flash is detected, this will return a non-zero value

StartTime This will return the value of the timer (seconds) when the valid
line flash started.

StopTime This will return the value of the timer (seconds) when the valid
line flash ended.

2.3.14 Create_OSI

Description:

This function generates an Open Switching Interval (OSI) with precise timing. This
function minimizes the effects of communication delays which can affect the duration
of an OSI which is created manually through separate DLL function calls. This
function returns when the OSI is completed.

Function Prototype:

long Create_OSI(long deviceid, long Duration)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

Duration This parameter specifies the duration (ms) of the OSI to be
generated.

AI-7280 DLL Programmers Guide 22

Advent Instruments Inc. Low Level DLL Function Reference

2.4 Routing Functions

2.4.1 Set_MeterSource

Description:

The Set_MeterSource function selects the signal source for the AC level meter in the
AI-7280.

Function Prototype:

long Set_MeterSource(long deviceid, long source)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

source The source property specifies the signal source for the AC level
meter in the AI-7280. The possible values for the source value are
listed in the following table.

source value AC Level Meter Source
0 None – Level meter is off
1 Telephone interface RX
2 Telephone interface hybrid RX
3 BNC input
4 Generator
5 Telephone interface TX

AI-7280 DLL Programmers Guide 23

Low Level DLL Function Reference Advent Instruments Inc.

2.4.2 Set_AnalyzerSource

Description:

The Set_AnalyzerSource function selects the signal source for the analyzer functions of
the AI-7280 (DTMF detector, FSK decoder, and AC capture)

Function Prototype:

long Set_AnalyzerSource(long device, long source)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

source The source property specifies the signal source for the analyzer
functions of the AI-7280 (DTMF detector, FSK decoder, etc.). The
possible values for the source value are listed in the following
table.

source value AC Level Meter Source
0 None – Level meter is off
1 Telephone interface RX
2 Telephone interface hybrid RX
3 BNC input
4 Generator
5 Telephone interface TX

AI-7280 DLL Programmers Guide 24

Advent Instruments Inc. Low Level DLL Function Reference

2.4.3 Set_BNCOutSource

Description:

The Set_BNCOutSource function selects the signal source for the BNC output on the
back of the AI-7280.

Function Prototype:

long Set_BNCOutSource(long device, long source)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

source The source property specifies the signal source for BNC output on
the AI-7280. The possible source values are listed below:

source value BNC Output Source
0 None
1 Telephone interface RX
2 Telephone interface hybrid RX
3 BNC input
4 Generator
5 Telephone interface TX
6 Input to AC level meter following optional

filter
7 Input to secondary level meter following

notch filters
8 Output of analyzer LPF (input to DTMF

detector and FSK decoder)

2.4.4 Set_BNCOutGain

Description:

This function sets the gain applied to signals routed to the BNC output.

Function Prototype:

long Set_BNCOutGain(long device, float gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

Gain The gain (volts/volt) applied to the all the signal generators before
they are applied to the BNC output

AI-7280 DLL Programmers Guide 25

Low Level DLL Function Reference Advent Instruments Inc.

2.4.5 Set_TelIntGenGain

Description:

The Set_TelIntGenGain function sets the gain applied to all the signal generators
before they are applied to the telephone line. This function allows the simultaneous
muting, attenuation, or amplification of all signal generators before the signals are
applied to the telephone line.

Function Prototype:

long Set_TelIntGenGain(long device, float gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

gain The gain (volts/volt) applied to the all the signal generators before
they are applied to the telephone line

2.4.6 Set_BNCInGain

Description:

The Set_BNCInGain function sets the gain applied to the BNC input signal before it is
mixed in with the other signal generators and applied to the telephone line.

Function Prototype:

long Set_BNCInGain(long device, float gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

gain The gain property sets the gain applied to the BNC input signal
before it is mixed in with the other signal generators and applied to
the telephone line.

AI-7280 DLL Programmers Guide 26

Advent Instruments Inc. Low Level DLL Function Reference

2.5 Measurement Functions

2.5.1 Set_MeterSpeed

Description:

The Set_MeterSpeed function sets the settling time and low frequency accuracy of the
AC level meter. The meter speed should be selected to suit the signal frequency as well
as the timing requirements of the particular application. In general, the longer the
settling time, the greater the low frequency accuracy.

Function Prototype:

long Set_MeterSpeed(long device, long acspeed)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

acspeed The acspeed parameter specifies the settling speed and low
frequency accuracy of the AC level meter.

acspeed Meter Settling Time
0 Very Fast. 0.025 second settling time ±0.1dB

accuracy down to 500Hz
1 Medium. 0.15 second settling time and

±0.1dB accuracy down to 100Hz
2 Slow 0.4 second settling time and ±0.1dB

accuracy down to 30 Hz
3 Very Slow. 1.1 second settling time and

±0.1dB accuracy down to 10Hz

AI-7280 DLL Programmers Guide 27

Low Level DLL Function Reference Advent Instruments Inc.

2.5.2 Get_MeterReading

Description:

The Get_MeterReading function returns the latest level and frequency reading from the
AC level meter and frequency counter in the AI-7280.

Function Prototype:

long Get_MeterReading(long deviceid, float *level, float *freq)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

level The level property returns the latest level reading from the AC
level meter when the Get_MeterReading function is called.

freq The freq parameter returns the latest frequency measurement from
the frequency counter when the Get_MeterReading function is
called.

2.5.3 Get_THDReading

Description:

The Get_THDReading function calculates the Total Harmonic Distortion plus Noise
(THD+N) for the signal on the telephone line. This function assumes that any band
limiting filter and the notch filters have already been set up for the signal on the line.
This function measures the main AC level and the AC level after the notch filters and
returns the ratio of the two.

Function Prototype:

long Get_THDReading(long device, float *thd)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

thd The thd parameter returns the ratio of the notched AC level and the
main AC level. If the notch filters are set to the center frequencies
of a tone on the telephone line then the value returned by this
function will reflect the THD+N of the signal on the telephone
line.

AI-7280 DLL Programmers Guide 28

Advent Instruments Inc. Low Level DLL Function Reference

2.5.4 Get_TelIntLineVolt

Description:

The Get_TelIntLineVolt function returns the latest measurement of the DC voltage on
the telephone line interface. The settling time of this measurement is dependent on the
dcspeed parameter, which can be set in the Set_TelIntMeasPoint function.

Function Prototype:

long Get_TelIntLineVolt(long device, float *voltage)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

voltage The voltage parameter returns the latest DC line voltage
measurement. The settling time and low frequency accuracy of this
measurement can be adjusted by specifying the dcspeed in the
Set_TelIntMeasPoint function.

2.5.5 Get_TelIntLoopCurrent

Description:

The Get_TelIntLoopCurrent function returns the current measurement of the DC loop
current on the telephone line. The settling time of this measurement is dependent on the
dcspeed parameter, which can be set in the Set_TelIntMeasPoint function.

Function Prototype:

long Get_TelIntLoopCurrent(long device, float *current)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

current The current parameter returns the latest measurement of the DC
loop current on the telephone line in mA.

AI-7280 DLL Programmers Guide 29

Low Level DLL Function Reference Advent Instruments Inc.

2.5.6 Get_TelIntUnbalCurrent

Description:

The Get_TelIntUnbalCurrent function returns the latest measurement of the unbalanced
current flowing out of the telephone interface. Note: excessive unbalanced current
draw can cause the AI-7280 to go into a protected mode.

Function Prototype:

long Get_TelIntUnbalCurrent(long device, float *unbalcurrent)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

unbalcurrent The unbalcurrent returns the latest measurement of the unbalanced
current flowing out of the telephone interface in mA.

2.5.7 Set_Filter

Description:

The Set_Filter function sets the filter type and corner frequencies for the main filter
bank in the AI-7280 unit. This filter bank conditions the signals before the AC level
meter and frequency counter. The signal source for the filter bank and meter can be
selected using the Set_MeterSource function.

Function Prototype:

long Set_Filter(long device, long type, float lfreq, float hfreq)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

type The type parameter specifies the type of filter loaded in the main
filter bank. The possible filter types are shown in the table below.

type Filter Type
0 No filter
1 Fourth order Butterworth low-pass filter. The

corner frequency for this filter is set by the
lfreq parameter

2 Fourth order Butterworth high-pass filter. The
corner frequency for this filter is set by the
hfreq parameter

AI-7280 DLL Programmers Guide 30

Advent Instruments Inc. Low Level DLL Function Reference

3 Fourth order Butterworth low-pass and high-
pass filter. The high and low corner
frequencies are set by the hfreq and lfreq
parameter respectively

4 Fourth order bandpass filter. The center
frequency for this filter type is set by the lfreq
parameter

5 Single notch filter. The center frequency for
this filter is set by the lfreq parameter

6 Dual notch filter. The center frequencies for
these filters are set by the lfreq and hfreq
parameters

7 DTMF low pass filter
8 DTMF high pass filter
9 C-Message filter

lfreq The lfreq parameter specifies the low corner frequency (Hz) for

the filter specified. This parameter can range from 20 to 10000Hz.

hfreq The hfreq parameter specifies the high corner frequency (Hz) for
the filter specified. This parameter can range from 20 to 10000Hz.

2.5.8 Set_NotchFilter

Description:

The Set_NotchFilter function sets the number of notch filters in the notch filter bank
and the center frequencies for each notch filter. These filters can be used to calculate
the THD+N for tones on the telephone line.

Function Prototype:

long Set_NotchFilter(long device, long numnotch, float freq1, float freq2)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numnotch The numnotch parameter specifies the number of notch filters in
the notch filter bank. There can be up to two notch filters loaded at
one time. If the number of notches is set to zero then no filtering is
performed by the notch filter bank.

freq1 The freq1 parameter specifies the center frequency (Hz) of the first
notch filter loaded into the notch filter bank This parameter can
range from 20 to 10000Hz

freq2 The freq2 parameter specifies the center frequency (Hz) of the
second notch filter loaded into the notch filter bank This parameter
can range from 20 to 10000Hz

AI-7280 DLL Programmers Guide 31

Low Level DLL Function Reference Advent Instruments Inc.

2.6 Tone Generation Functions

2.6.1 Set_Tone

Description:

The Set_Tone function sets the level and frequency of one or more of the tone
generators on the AI-7280. This function can be called at any time to change the level
or frequency of any of the tone generators. The startphase parameter specifies the
starting phase of the tone generators in degrees (0-360). This function call will not
affect the frequency or level of other signal generators (FSK,DTMF,MF, AM etc) if
this function is called while any of these generators are active.

Function Prototype:

long Set_Tone(long device, long tonemask, float level, float freq, float
startphase)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tonemask The tonemask parameter is a bit mask that indicates which of the
four tone generators to modify. The tonemask value can range
from 0 to 15. The bit assignments in the bit mask are listed in the
following table.

tonemask bit Tone Generator
0 Tone A
1 Tone B
2 Tone C
3 Tone D

All tone generators with the corresponding bit set in the tonemask
will be updated with the new level and frequency.

level The level parameter specifies the level of the tone generator(s) in
Vrms. The level parameter can range from 0 to 4 Vrms.

freq The freq parameter specifies the frequency of the tone generator(s)
in Hz. The freq value can range from 20 to 18000Hz.

startphase The startphase parameter specifies the starting phase of the tone
generator in degrees. This is the starting phase for every tone burst
produced by the tone generator. This parameter can range from 0
to 360 degrees.

AI-7280 DLL Programmers Guide 32

Advent Instruments Inc. Low Level DLL Function Reference

2.6.2 Set_ToneShape

Description:

The Set_ToneShape function sets the wave shape of one or more of the tone
generators. The tone shape can be sine wave, triangle wave, square wave, or user-
defined. This function can be called at any time to change the wave shape of any tones
being generated. This function call will not affect the wave shape of other signal
generators (FSK,DTMF,MF, AM etc) if this function is called while any of these
generators are active.

Function Prototype:

long Set_ToneShape(long device, long tonemask, long shape)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tonemask The tonemask parameter is a bit mask that indicates which of the
four tone generators to modify. The tonemask value can range
from 0 to 15. The bit assignments in the bit mask are listed in the
following table.

tonemask bit Tone Generator
0 Tone A
1 Tone B
2 Tone C
3 Tone D

All tone generators with the corresponding bit set in the tonemask
will be updated with the new wave shape

shape The shape parameter specifies the wave shape to be used by the
tone generator(s) selected by the tone mask. The allowed values
for the shape parameter are listed in the function below.

shape Ringing Waveshape
0 Sine wave
1 Triangle wave
2 Square wave
3 User defined shape. This shape can be set

using the Load_UserWaveShape function

AI-7280 DLL Programmers Guide 33

Low Level DLL Function Reference Advent Instruments Inc.

2.6.3 Start_Tone

Description:

The Start_Tone function starts one or more tone generators on the AI-7280 in one of
three modes. If the usepattern parameter is non-zero then this function starts the tone
generator with the pattern information specified using the Set_TonePattern function. If
the usepattern parameter is zero and the duration is positive then this function generates
a tone burst for the length of time specified by the duration parameter. If the usepattern
parameter is zero and the duration parameter is negative then the tone generator is
enabled for an indefinite period of time. If the wait parameter is non-zero then this
function waits for the completion of the tone pattern or burst before returning control to
the calling program. If an infinite duration is specified (duration < 0) then the wait
parameter is ignored and control is returned immediately.

This function can produce one tone pattern or single duration burst at a time on the AI-
7280. Calling Start_Tone with a pattern or duration specified will stop any other
pattern in progress and start the new pattern. However, tones can be turned on with
infinite duration or disabled during a tone pattern without disturbing the pattern timing.

The tone generators in the AI-7280 are also allocated to be used for other resources in
addition to the simple tone generator functions (FSK,AM,DTMF,MF). If any of the
tone generators specified in the Start_Tone functions are in use by another signal
generator this function will return an error code indicating a resource conflict.

Function Prototype:

long Start_Tone(long device, long tonemask, long usepattern, float duration,
long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tonemask The tonemask parameter is a bit mask that indicates which of the
four tone generators to modify. The tonemask value can range
from 0 to 15. The bit assignments in the bit mask are listed in the
following table.

tonemask bit Tone Generator
0 Tone A
1 Tone B
2 Tone C
3 Tone D

All tone generators with the corresponding bit set in the tonemask
will be updated with the new level and frequency

usepattern The usepattern parameter specifies whether a tone pattern is to be
generated. If this value is non-zero then a tone pattern is generated.
If this value is zero the tone pattern is not generated.

duration The duration parameter specifies the duration of a single tone burst
(in milliseconds) if no tone pattern is used. If this value is positive

AI-7280 DLL Programmers Guide 34

Advent Instruments Inc. Low Level DLL Function Reference

then a tone burst is produced for the specified number of
milliseconds. If the value of duration is negative then tone is
turned on indefinitely.

wait The wait parameter specifies whether this function should wait for
the completion of the tone burst(s) before returning control to the
calling program. If an infinite duration is specified (usepattern=0
duration < 0) then this parameter is ignored and control is returned
immediately.

2.6.4 Stop_Tone

Description:

The Stop_Tone function stops the specified tone generators. If the tone generator is
being used in a tone pattern or single duration burst, then only the tone generators
specified will be stopped – any other tones used in the pattern or single duration burst
will continue to generate the pattern or burst.

Function Prototype:

long Stop_Tone(long device, long tonemask)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tonemask The tonemask parameter is a bit mask that indicates which of the
four tone generators to modify. The tonemask value can range
from 0 to 15. The bit assignments in the bit mask are listed in the
following table.

tonemask bit number Tone Generator
0 Tone A
1 Tone B
2 Tone C
3 Tone D

All tone generators with the corresponding bit set in the tonemask
will be updated with the new waveshape

AI-7280 DLL Programmers Guide 35

Low Level DLL Function Reference Advent Instruments Inc.

2.6.5 Set_TonePattern

Description:

The Set_TonePattern function sets the timing parameters used when generating tone
patterns. The ontime parameter specifies the duration of a tone burst in milliseconds.
The offtime parameter specified the time interval between tone bursts. The cycles
parameter specifies the number of tone bursts to generate.

Function Prototype:

long Set_TonePattern(long device, float ontime, float offtime, long cycles)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

ontime The ontime parameter specifies the duration of each tone burst (in
milliseconds). This value must be greater than zero.

offtime The offtime parameter specifies the time interval between each
tone burst (in milliseconds). This value must be greater than zero.

cycles The cycles parameter specifies the number of tone bursts to
generate. This value must be greater than zero.

AI-7280 DLL Programmers Guide 36

Advent Instruments Inc. Low Level DLL Function Reference

2.6.6 Get_ToneStatus

Description:

The Get_ToneStatus function returns the current level and frequency setting of a single
tone generator and also indicates if the tone generator is currently in use. This function
only returns the status of the tone generator corresponding to the lowest bit set in the
tone mask. ie if the tone mask = 14 then this function returns the status of ToneB.

Function Prototype:

long Get_ToneStatus(long device, long tonemask, float *level, float *freq,
long * enabled)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tonemask The tonemask parameter is a bit mask that indicates which of the
four tone generators to read. The tonemask value can range from 1
to 15. The bit assignments in the bit mask are listed in the
following table.

tonemask bit Tone Generator
0 Tone A
1 Tone B
2 Tone C
3 Tone D

level The level parameter returns the tone generator level in units of

Vrms

freq The freq parameter returns the tone generator frequency setting in
units of Hz

enabled The enabled property returns a value indicating whether the tone
generator is in use. If this value is zero then the tone generator is
inactive. If this value is non-zero then the tone generator is active.
If a pattern is being generated then the tone generator will always
return an active status - even in the time intervals between tone
bursts.

AI-7280 DLL Programmers Guide 37

Low Level DLL Function Reference Advent Instruments Inc.

2.7 AM Modulation Functions

2.7.1 Set_AMMod

Description:

The Set_AMMod function sets the signal parameters for the AM modulator. This
function specifies the level, frequency, and wave shape for a carrier tone as well as the
frequency, wave shape, and modulation depth for the modulating tone. This function
can be called at any time to update the AM modulator and will not modify the levels or
frequencies of any other active signal generators.

Function Prototype:

long Set_AMMod(long deviceid, float carrierlevel, float carrierfreq, long
carriershape, float modfreq, long modshape, float depth)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

carrierlevel The carrier level parameter specifies the level of the carrier tone in
Vrms. The carrierlevel value can range from 0 to 4Vrms.

carrierfreq The carrierfreq parameter specifies the frequency of the carrier
tone in Hz. The carrierfreq value can range from 20 to 18000Hz.

carriershape The carriershape parameter specifies the wave shape of the carrier
tone. The possible values for the shape are shown in the table
below.

carriershape Carrier WaveShape
0 Sine wave
1 Triangle wave
2 Square wave
3 User defined shape. This shape can be set

using the Load_UserWaveShape function

modfreq The modfreq parameter specifies the frequency of the modulating
tone in Hz. The modfreq value can range from 20 to 18000 Hz.

modshape The modshape parameter specifies the wave shape of the
modulating tone. The modshape has the same possible values as
the carriershape parameter.

depth The depth parameter specifies the depth of the AM modulation in
percent. The depth value can range from 0 to 100%

AI-7280 DLL Programmers Guide 38

Advent Instruments Inc. Low Level DLL Function Reference

2.7.2 Start_AMMod

Description:

The Start_AMMod function starts the AM modulator on the AI-7280. Since the AM
modulator uses tone generators A and B, calling this function will halt any tones or
tone patterns being generated on either of these tone generators. The AM modulator
cannot be started if the FSK generator is active since it also uses tone A.

Function Prototype:

long Start_AMMod(long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.7.3 Stop_AMMod

Description:

The Stop_AMMod function stops the AM modulator on the AI-7280.

Function Prototype:

long Stop_AMMod(long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.7.4 Get_AMModStatus

Description:

The Get_AMModStatus function indicates if the AM modulator is active.

Function Prototype:

long Get_AMModStatus(long device, long *isactive)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 39

Low Level DLL Function Reference Advent Instruments Inc.

isactive The isactive parameter returns a non-zero value if the AM

modulator is active. The isactive parameter returns zero if the AM
modulator is inactive.

AI-7280 DLL Programmers Guide 40

Advent Instruments Inc. Low Level DLL Function Reference

2.8 Ringing Functions

2.8.1 Set_Ring

Description:

The Set_Ring function sets the level (Vrms) and frequency (Hz) and DC voltage of the
ring generator on the AI-7280. This function can be called at any time. If this function
is called while ringing is active then the level and frequency of the ringing signal will
immediately change to the new settings.

Function Prototype:

long Set_Ring(long device, float level, float freq, float dc)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

level The level parameter specifies the ringing level in Vrms. The
ringing level can range from 0 to 80Vrms.

freq The freq parameter specifies the frequency of the ringing signal in
Hz. The ringing frequency can range from 10 to 100Hz.

dc The dc parameter specifies the dc voltage during ringing in volts
DC. This parameter only affects the DC voltage during ringing;
when ringing is inactive the DC line voltage reverts to the line
voltage set in the Set_TelIntFeed function.

2.8.2 Set_RingPattern

Description:

The Set_RingPattern function sets the timing parameters used when generating a
ringing pattern. The ontime parameter sets the duration of each ringing burst (in
milliseconds). The offtime parameter sets the time interval between ringing bursts (in
milliseconds). The cycles parameter sets the number of ringing bursts to generate

Function Prototype:

long Set_RingPattern(long device, float ontime, float offtime, long cycles)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device

AI-7280 DLL Programmers Guide 41

Low Level DLL Function Reference Advent Instruments Inc.

function.

ontime The ontime parameter specifies the duration of each ringing burst
(in milliseconds). This value must be greater than zero.

offtime The offtime parameter specifies the time interval between each
ringing burst (in milliseconds). This value must be greater than
zero.

cycles The cycles parameter the number of ringing bursts to generate.
This value must be greater than zero.

2.8.3 Set_RingShape

Description:

The Set_RingShape function sets the waveshape for the ringing signal. The ring
generator supports sine wave, triangle wave, square wave, and user defined wave
shapes.

Function Prototype:

long Set_RingShape(long device, long shape)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

shape The shape parameter specifies the wave shape to be used by the
ring generator. The allowed values for the shape parameter are
listed in the function below.

shape Ringing Waveshape
0 Sine wave
1 Triangle wave
2 Square wave
3 User defined shape. This shape can be set

using the Load_UserWaveShape function

AI-7280 DLL Programmers Guide 42

Advent Instruments Inc. Low Level DLL Function Reference

2.8.4 Start_Ring

Description:

The Start_Ring function starts the ring generator on the AI-7280 in one of three modes.
If the usepattern parameter is non-zero then this function starts ringing with the pattern
information specified. If the usepattern parameter is zero and the duration is positive
then this function generates a ring burst for the length of time specified by the duration
parameter. If the usepattern parameter is zero and the duration parameter is negative
then the ringing generator is started for an indefinite period of time. The startphase
parameter specifies the starting phase of the ring generator in degrees (0-360). If the
wait parameter is non-zero then this function waits for the completion of the ringing
pattern or burst before returning control to the calling program. If an infinite duration is
specified (duration < 0) then the wait parameter is ignored and control is returned
immediately.

If the telephone line goes off hook while the AI-7280 is generating a ringing pattern or
a fixed length burst, the ringing will stop and this function will return control
immediately.

When the ringing generator is started all other functions (FSK, MF, DTMF, tones,
noise, etc.) are stopped. While ringing is enabled, no other signal generators can be
started.

Function Prototype:

long Start_Ring(long device, long usepattern, float duration, float startphase,
long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

usepattern The usepattern parameter specifies whether a ringing pattern is to
be generated. If this value is non-zero then a ringing pattern is
used. If this value is zero the ringing pattern is not used.

duration The duration parameter specifies the duration of the ringing burst
(in milliseconds) if no ringing pattern is used. If this value is
positive then a ringing burst is produced for the specified number
of milliseconds. If the value of duration is negative then ringing is
turned on indefinitely.

wait The wait parameter specifies whether this function should wait for
the completion of ringing before returning control to the calling
program. If an infinite duration is specified (usepattern=0 and
duration < 0) then this parameter is ignored and control is returned
immediately.

AI-7280 DLL Programmers Guide 43

Low Level DLL Function Reference Advent Instruments Inc.

2.8.5 Stop_Ring

Description:

The Stop_Ring function stops the ring generator.

Function Prototype:

long Stop_Ring(long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.8.6 Get_RingStatus

Description:

The Get_RingStatus function returns the current level and frequency setting of the ring
generator and also indicates if the ring generator is currently active.

Function Prototype:

long Get_RingStatus(long device, float * level, float *freq, long *enabled)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

level The level parameter returns the ring generator level when this
function is called. The level value is in units of Vrms

freq The freq parameter returns the ring generator frequency setting
when this function is called. The freq value is in units of Hz

enabled The enabled property returns a value indicating whether the ring
generator is active. If this value is zero then the ring generator is
inactive. If this value is non-zero then the ring generator is active.
If a pattern is being generated then the ring generator will always
return an active status (even in the time intervals between ringing
bursts)

AI-7280 DLL Programmers Guide 44

Advent Instruments Inc. Low Level DLL Function Reference

2.8.7 Set_RingCadence

Description:

This function allows the generation of more advance ringing patterns than the
Set_RingPattern function. Using this function, each ringing burst can have between 1
and 3 ringing pulses with programmable durations and off-times.

Function Prototype:

long Set_RingCadence (long deviceid, long Pulses, float OnTime1, float
OffTime1, float OnTime2, float OffTime2, float OnTime3, float OffTime3,
long Cycles)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numpulses This parameter sets the number of pulses (1 to 3) to generate in
each ringing burst.

ontime1 This parameter sets the duration (ms) of the first ringing pulse

offtime1 This parameter sets the time interval from the first to second
ringing pulse. If the number of pulses is set to 1 then this
parameter sets the time interval from the ringing pulse to the next
ringing burst.

ontime2 This parameter sets the duration of the second ringing pulse. If the
number of pulses is set to less than two then this parameter is
ignored.

offtime2 This parameter sets the time interval between the second and third
ringing pulse. If the number of ringing pulses is set to less than 2
then this parameter is ignored. If 2 pulses are to be generated then
this parameter sets the time from the second pulse to the start of
the next ringing burst.

ontime3 This parameter sets the duration of the third ringing pulse. If the
number of ringing pulses is set to less than 3 then this parameter is
ignored.

offtime3 This parameter sets the time interval between the third ringing
pulse and the next ringing burst. If the number of ringing pulses is
set to less than 3 then this parameter is ignored.

cycles This parameter specifies the number of ringing bursts to generate

AI-7280 DLL Programmers Guide 45

Low Level DLL Function Reference Advent Instruments Inc.

2.9 Echo Functions

2.9.1 Set_Echo

Description:

The Set_Echo function sets the gain and delay values for a tap in the echo generator.
The AI-7280 supports up to three different echos (three taps) which can each have
independent gain and delay. Each delay can range from 0 to 25ms and the gains can
range from –100 to 100.

Function Prototype:

long Set_Echo(long device, long tapindex, float delay, float gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tapindex The tapindex parameter specifies which tap in the echo generator
to modify. This value can range from 1 to 3.

delay The delay parameter specifies the delay (in milliseconds) for the
specified tap in the echo generator. The delay for each tap can
range from 0 to 25 milliseconds.

gain The gain parameter specifies the linear gain (V/V) for the specified
tap in the echo generator. The gain for each tap can range from –
100 to 100.

AI-7280 DLL Programmers Guide 46

Advent Instruments Inc. Low Level DLL Function Reference

2.9.2 Get_Echo

Description:

The Get_Echo function returns the delay and gain settings for a tap in the echo
generator.

Function Prototype:

long Get_Echo(long device, long tapindex, float *delay, float *gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

tapindex The tapindex parameter specifies which tap in the echo generator
to read from. This value can range from 1 to 3.

delay The delay parameter returns the delay value (in milliseconds) for
the tap in the echo generator. The delay for each tap can range
from 0 to 25 milliseconds.

gain The gain parameter returns the linear gain (V/V) for the tap in the
echo generator. The gain for each tap can range from –100 to 100.

2.9.3 Set_EchoRingDisable

Description:

The Set_EchoRingDisable function sets whether echo is automatically disabled during
ringing.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Set_EchoRingDisable(long deviceid , long Value)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

value If value is non-zero then the echo generator will be disabled while
ringing is active. If value is zero then the echo generator will
operate during ringing.

AI-7280 DLL Programmers Guide 47

Low Level DLL Function Reference Advent Instruments Inc.

2.9.4 Get_EchoRingDisable

Description:

The Get_EchoRingDisable function returns a value indicating whether echo is
automatically disabled during ringing.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Get_EchoRingDisable (long deviceid , long *Value)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

value If value is non-zero then the echo generator will be disabled while
ringing is active. If value is zero then the echo generator will
operate during ringing.

AI-7280 DLL Programmers Guide 48

Advent Instruments Inc. Low Level DLL Function Reference

2.10 FSK Generator Functions

2.10.1 Set_FSKGen

Description:

The Set_FSKGen function sets the signal level, frequency, and timing settings required
by the FSK generator.

Function Prototype:

long Set_FSKGen (long device, float marklevel, float spacelevel, float
markfreq, float spacefreq, float marktime, float spacetime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

marklevel The marklevel parameter specifies the level (Vrms) of the mark
tone for the FSK generator. The marklevel parameter can range
from 0 to 4Vrms.

spacelevel The spacelevel parameter specifies the level (Vrms) of the space
tone for the FSK generator. The spacelevel parameter can range
from 0 to 4Vrms.

markfreq The markfreq parameter specifies the frequency (Hz) for the mark
tone. This parameter can range from 20 to 10000Hz.

spacefreq The spacefreq parameter specifies the frequency (Hz) for the space
tone. This parameter can range from 20 to 10000Hz.

marktime The marktime parameter specifies the bit time (in seconds) for the
mark bits. This parameter can range from 0.00025 to 1.0 seconds.

spacetime The spacetime parameter specifies the bit time (in seconds) for the
space bits . This parameter can range from 0.00025 to 1.0 seconds.

AI-7280 DLL Programmers Guide 49

Low Level DLL Function Reference Advent Instruments Inc.

2.10.2 Clear_FSKGen

Description:

The Clear_FSKGen function clears all the data out of the transmit buffer of the FSK
generator.

Function Prototype:

long Clear_FSKGen (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.10.3 Add_FSKMarkBits

Description:

The Add_FSKMarkBits function appends the specified number of mark (logic 1) bits
to the FSK transmit buffer. This function does not modify the FSK checksum value.

Function Prototype:

long Add_FSKMarkBits (long deviceid, long numbits)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numbits The numbits parameter specifies the number of mark bits to add to
the FSK transmit buffer.

AI-7280 DLL Programmers Guide 50

Advent Instruments Inc. Low Level DLL Function Reference

2.10.4 Add_FSKSpaceBits

Description:

The Add_FSKSpaceBits function appends the specified number of space (logic 0) bits
to the FSK transmit buffer. This function does not modify the FSK checksum value.

Function Prototype:

long Add_FSKSpaceBits (long deviceid, long numbits)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numbits The numbits parameter specifies the number of space bits to add to
the FSK transmit buffer.

2.10.5 Add_FSKAltBits

Description:

The Add_FSKAltBits function appends the specified number of alternating mark and
space bits to the FSK transmit buffer. The first bit added is always a space bit. This
function does not modify the FSK checksum value.

Function Prototype:

long Add_FSKAltBits (long deviceid, long numbits)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numbits The numbits parameter specifies the number of alternating mark -
space bits to add to the FSK transmit buffer. The first bit added is
always a space.

AI-7280 DLL Programmers Guide 51

Low Level DLL Function Reference Advent Instruments Inc.

2.10.6 Add_FSKByte

Description:

The Add_FSKByte function appends a byte to the FSK transmit buffer. The number of
bits added depends on the current parity and stop bits settings. (See the
Set_FSKFormat function for more details). This function will update the FSK
checksum using the byte value (if the checksum is enabled).

Function Prototype:

long Add_FSKByte (long deviceid, long bytevalue)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

bytevalue The bytevalue parameter specifies the value of the byte to add to
the FSK transmit buffer. The number of bits added depends on the
current parity and stop bit settings. This value must be between 0
and 255.

2.10.7 Add_FSKString

Description:

The Add_FSKString function appends a string of values to the FSK generator. The
number of bits added to the transmit buffer for each character depends on the current
parity and stop bits setting. This function will update the FSK checksum with each
character value (if the checksum is enabled).

Function Prototype:

long Add_FSKString (long deviceid, char fskstring[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

fskstring The fskstring parameter is a NULL terminated string which
contains up to 64 characters to be added to the FSK transmit
buffer.

AI-7280 DLL Programmers Guide 52

Advent Instruments Inc. Low Level DLL Function Reference

2.10.8 Add_FSKHexString

Description:

The Add_FSKHexString function appends a series of hex values to the FSK generator
data.

Function Prototype:

long Add_FSKHexString (long deviceid, char hexstring[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

hexstring The fskstring parameter is a NULL terminated string which
contains up to 64 hex characters to be added to the FSK transmit
buffer. The string will be interpreted as 32 byte values (one
character per nibble)

2.10.9 Put_FSKBinaryData

Description:

The Put_FSKBinaryData function inserts a specified number of bits into the FSK
transmit buffer from an array of 32-bit integer values. This function overwrites any
data already in the FSK buffer. Bit values are inserted into the buffer from the LSB to
MSB of each 32-bit integer starting at location 0.

Function Prototype:

long Put_FSKBinaryData (long deviceid, long numbits, long data[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numbits The numbits parameter specifies the number of bits to insert into
the FSK transmit buffer. These bits are extracted from the data
array parameter (from LSB to MSB).

data[] The data[] parameter is an array of 32-bit integer values that must
be loaded with the bit values to store in the FSK data transmit
buffer. Bits values are loaded from LSB to MSB of each 32-bit
word starting at index 0. Note: Before calling this function
insure that data[] is allocated to have at least ceil(numbits/32)
locations.

AI-7280 DLL Programmers Guide 53

Low Level DLL Function Reference Advent Instruments Inc.

2.10.10 Add_FSKXSum

Description:

The Add_FSKXSum function appends the current value of the FSK checksum to the
FSK transmit buffer.

Function Prototype:

long Set_FSKXSum (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 54

Advent Instruments Inc. Low Level DLL Function Reference

2.10.11 Set_FSKFormat

Description:

The Set_FSKFormat function sets the data format parameters for the FSK generator.
This function sets the parity and stopbit settings used when adding data to the FSK
buffer. This function also sets the checksum calculation type and enables or disables
the checksum calculation.

Function Prototype:

long Set_FSKFormat (long deviceid, long parity, long stopbits, long
xsumtype, long xsumenable)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

parity The parity parameter sets the parity used when adding characters
to the FSK transmit buffer. The parity settings are listed in the
table below.

parity Value Parity Setting
0 No Parity – 8 bits per character
1 Odd Parity – 7 bits per characater
2 Even Parity – 7 bits per character

stopbits The stopbits parameter specifies the number of stop bits added

after every byte or character value. The stopbits parameter can
range from 1 to 100 bits.

xsumtype The xsumtype parameter specifies the checksum calculation
method applied when adding bytes or characters to the FSK
transmit buffer. The settings for the xsumtype are shown in the
table below.

xsumtype
Value

Checksum Type

0 Inverted Modulus 256. Conforms to Bellcore
and ETSI FSK Caller ID standards

1 16 Bit CRC (x16+x12+x5+1). Conforms to
NTT (Japan) FSK Caller ID standards

xsumenable When the xsumenable value is non-zero then the checksum

calculation is performed whenever a byte or character is added to
the FSK transmit buffer. If this value is set to zero then the
checksum calculations are disabled.

2.10.12 Set_FSKXSum

AI-7280 DLL Programmers Guide 55

Low Level DLL Function Reference Advent Instruments Inc.

Description:

The Set_FSKXSum function sets the value of the FSK checksum.

Function Prototype:

long Set_FSKXSum (long deviceid, long xsumvalue)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

xsumvalue The xsumvalue parameter sets the current value of the FSK
checksum.

2.10.13 Get_FSKXSum

Description:

The Get_FSKXSum function returns the current value of the FSK checksum.

Function Prototype:

long Get_FSKXSum (long deviceid, long *xsumvalue)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

xsumvalue The xsumvalue parameter returns the current value of the FSK
checksum.

AI-7280 DLL Programmers Guide 56

Advent Instruments Inc. Low Level DLL Function Reference

2.10.14 Start_FSKGen

Description:

The Start_FSKGen function causes the FSK generator to begin transmitting FSK data
on the telephone line. The FSK generator can be started in four different modes: single-
shot, single shot and hold carrier, continuous, and external modulation. The FSK
generator will begin transmitting the FSK starting at the specified bit index and with
the starting phase specified. If the wait parameter is non-zero then this function waits
for the completion of the FSK transmission before returning control to the calling
program (note: this only applies in single shot mode)

Note: The FSK generator uses tone generator A to generate the FSK signals. Calling
Start_FSKGen will override any tones or tone patterns generated on tone generator A.

Function Prototype:

long Start_FSKGen (long deviceid, long fskmode, long bitindex, float
startphase, long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

fskmode The fskmode parameter specifies the mode of operation for the
FSK generator. The possible modes are listed in the table below

fskmode FSK Transmit mode
0 Single Shot - The FSK data is transmitted from

the starting bit index to the end of the FSK
transmit buffer and then the FSK generator is
disabled.

1 Single Shot Hold Carrier - The FSK data is
transmitted from the starting bit index to the
end of the FSK transmit buffer. Then the FSK
generator is left active holding the tone
corresponding to the last bit.

2 Continuous – The FSK data is transmitted
from the starting index to the end of the FSK
transmit buffer. The data is then continuously
transmitted from index 0 to the end of the
transmit buffer until the generator is stopped
using the Stop_FSKGen function.

3 External Modulation – The FSK generator is
modulated by the digital values present on
digital input A. The FSK generator will
continue until the Stop_FSKGen function is
called.

bitindex This specifies the index of the first bit which will be transmitted.

This value can be between 0 (the first bit) and NumBits-1

AI-7280 DLL Programmers Guide 57

Low Level DLL Function Reference Advent Instruments Inc.

startphase The startphase parameter specifies the starting phase of the FSK

carrier signal in degrees. This parameter can range from 0 to 360.

wait If the wait parameter is non-zero, this function waits for the FSK
transmission to complete before returning control to the calling
program. Note: this parameter is only valid for single-shot mode.

2.10.15 Stop_FSKGen

Description:

The Stop_FSKGen function stops the FSK generator.

Function Prototype:

long Stop_FSKGen (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.10.16 Set_FSKGenWaveShape

Description:

The Set_FSKGenWaveShape function sets the wave shape for the tones used by the
FSK generator. The wave shape can be selected as sine wave, triangle wave, square
wave, or a user defined wave shape.

Function Prototype:

long Get_FSKXSum (long deviceid, long shape)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

shape The shape parameter sets the wave shape used by the FSK
generator. The possible values are listed in the table below.

shape FSK Generator Waveshape
0 Sine wave
1 Triangle wave
2 Square wave
3 User defined shape. This shape can be set

using the Load_UserWaveShape function

AI-7280 DLL Programmers Guide 58

Advent Instruments Inc. Low Level DLL Function Reference

2.10.17 Get_FSKGenStatus

Description:

The Get_FSKGenStatus function indicates if the FSK generator is active and returns
the index of the bit currently being transmitted.

Function Prototype:

long Get_FSKGenStatus (long deviceid, long *isactive, long *bitindex)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

isactive The isactive property will be set to a non-zero value if the FSK
generator is active

bitindex The bitindex property returns the index of the current bit being
transmitted by the FSK generator.

2.10.18 Clear_FSKDropOut

Description:

The Clear_FSKDropOut function clears the contents of the FSK gain adjustment table.
For more information on how this table is used to dynamically adjust the FSK levels,
see the Set_FSKDropout function. This function cannot be called while the FSK
generator is active – doing so will return an error code.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Clear_FSKDropOut (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 59

Low Level DLL Function Reference Advent Instruments Inc.

2.10.19 Set_FSKDropout

Description:

The Set_FSKDropout function is used to specify dynamic signal level changes to the
FSK generator. Changes in FSK signal level can be used to simulate signal drop-outs
or gain hits.

The AI-7280 can adjust the mark & space signal level up to four times during a FSK
transmission. This is implemented through a table containing a column of bit index
values and a column of gain values. When the FSK generator has finished transmitting
the bit specified in the bit index column, it adjusts the mark & space level by the
amount specified in the gain column.

For example, the following table uses all four possible rows to create a FSK level drop
of 60 dB (0.001) after the 200th bit for a duration of 20 bits. After the 220th bit, the
FSK level is increased by 60 dB (1000), which restores the original level. In a similar
fashion, rows 3 and 4 in the table create a level drop of 20 dB starting after the 300th
bit, for a duration of 10 bits.

 bit index gain
 1: 200 0.001
 2: 220 1000
 3: 300 0.1
 4: 310 10

It is important that the bit index column contains values of increasing value (as shown
in the above example).

The Set_FSKDropout function is used to modify the bit index and gain values stored in
the table. Before using Set_FSKDropout, call Clear_FSKDropout once in order to
reset the table structure. Once the table has been reset the Set_FSKDropout function is
used to modify the table data. Do not call this function while the FSK generator is
active – doing so will return an error code.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Set_FSKDropout (long deviceid, long index , long bitindex , float gain)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index value specifies which entry in the FSK dropout table to
modify. The index value must be between 1 and 4.

bitindex The bitindex value specifies the index of the bit before the gain
adjustment is to be made. For example to modify the gain starting

AI-7280 DLL Programmers Guide 60

Advent Instruments Inc. Low Level DLL Function Reference

at bit 4 you would set bitindex = 3. This value can range from 1 to
32767.

gain The gain parameter specifies the gain adjustment to make on all
bits after the bit specified by bitindex. This value can range from
0.0001 to 10000.0

AI-7280 DLL Programmers Guide 61

Low Level DLL Function Reference Advent Instruments Inc.

2.10.20 Get_FSKDropout

Description:

The Get_FSKDropout function returns the BitIndex and Gain value for one entry in the
FSK Dropout structure.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Get_FSKDropout (long deviceid, long index , long *bitindex , float *gain
)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index parameter specifies which entry in the FSK dropout
table to modify. The index value must be between 1 and 4.

bitindex The bitindex parameter returns the index of the bit before the gain
adjustment is to be made. For example to modify the gain starting
at bit 4 you would set bitindex = 3. This value can range from 1 to
32767.

gain The gain parameter returns the gain adjustment to make on all bits
after the bit specified by bitindex. This value can range from
0.0001 to 10000.0

AI-7280 DLL Programmers Guide 62

Advent Instruments Inc. Low Level DLL Function Reference

2.11 DTMF/MF Generator Functions

2.11.1 Set_DTMF

Description:

The Set_DTMF function sets the level and timing settings for the DTMF generator.
This lolevel and hilevel parameters set the voltage (in Vrms) for the low frequency
group and high frequency group respectively. The ontime parameter sets the duration
(in milliseconds) of each DTMF digit, and the offtime parameter sets the inter-digit
interval (in milliseconds). This function must be called before sending DTMF digits.

Note: the DTMF generator and MF generator use the same resources on the AI-7280.
This function resets the first 16 symbols in the MF generator to the DTMF frequencies
and the specified levels and on-times. After this function call the MF symbols “A” to
“P” will be reset to DTMF digits.

Function Prototype:

long Set_DTMF (long deviceid, float lolevel, float hilevel, float freqadjust,
float ontime, float offtime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

lolevel The lolevel parameter specifies the level (in Vrms) for the low
frequency DTMF tones. The lolevel parameter can range from 0 to
4 Vrms.

hilevel The hilevel parameter specifies the level (in Vrms) for the high
frequency DTMF tones. The hilevel parameter can range from 0 to
4 Vrms.

freqadjust The freqadjust parameter sets the frequency adjustment (in
percent) for all DTMF digits. Setting the freqajust parameter to a
non-zero value will increase or decrease all the DTMF frequencies
by the specified percentage. The freqadjust parameter can range
from –20 to +20%.

AI-7280 DLL Programmers Guide 63

Low Level DLL Function Reference Advent Instruments Inc.

2.11.2 Send_DTMF

Description:

The Send_DTMF function transmits a sequence of up to 64 DTMF digits on the
telephone line. The digits parameter is a string of DTMF digits to transmit. The wait
parameter indicates if this function should wait for the DTMF generator to complete
before returning control to the calling program.

The DTMF generator shares resources with the MF generator and also uses tone
generators C and D. The Send_DTMF function will interrupt any tones being generated
using tone generators C or D. The DTMF generator and the MF generator must both be
inactive before calling this function.

Function Prototype:

long Send_DTMF (long deviceid, char symbols[], long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

digits The digits parameter should be a NULL terminated string of
DTMF symbols to transmit on the telephone line. Valid DTMF
digits are represented by the characters “0” to “9” and “A” to “D”
and the characters “*” and “#”. If the string contains any other
characters this function will return an error. The length of this
string must not exceed 64 characters.

wait If the wait parameter is non-zero then this function waits for the
DTMF generator to finish transmitting the digits before returning
control to the calling program. Otherwise, control is returned
immediately.

2.11.3 Stop_DTMF

Description:

The Stop_DTMF function immediately stops the DTMF generator.

Function Prototype:

long Stop_DTMF (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 64

Advent Instruments Inc. Low Level DLL Function Reference

2.11.4 Get_DTMFStatus

Description:

The Get_DTMFStatus function indicates if the DTMF generator is active (generating
digits).

Function Prototype:

long Get_DTMFStatus (long deviceid, long *status)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

status The status value is returned with a non-zero value if the DTMF
generator is active (generating digits). Otherwise the status value is
set to zero.

2.11.5 Set_MFSymbol

Description:

The Set_MFSymbol function sets the level, frequency, and duration for a single MF
symbol in the MF generator. Up to 20 different MF symbols can be defined
corresponding to the characters “A” through “T”. Each MF symbol can be defined with
two tones having independent levels, frequencies, and duration. Note: the symbol
characters are not case sensitive.

Note: the DTMF generator and MF generator use the same resources on the AI-7280.
Changing the first 16 symbols of the MF generator “A” through “P” modify the signal
parameters for the DTMF generator. Before transmitting DTMF symbols the DTMF
signal parameters should be restored by calling the Set_DTMF function.

Function Prototype:

long Set_MFSymbol(long deviceid, char symbol[], float level1, float level2,
float freq1, float *freq2, float ontime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

symbol The symbol parameter is a NULL terminated string containing at
least one valid MF symbol in the range “A” through “T” (not case
sensitive). This function sets the signal parameters for the first
character in the symbol string.

AI-7280 DLL Programmers Guide 65

Low Level DLL Function Reference Advent Instruments Inc.

level1 The level1 parameter specifies the level (in Vrms) for the first in
the MF symbol. This parameter can range from 0 to 4Vrms.

level2 The level2 parameter specifies the level (in Vrms) for the second
tone in the MF symbol. This parameter can range from 0 to
4Vrms.

freq1 The freq1 parameter specifies the frequency (Hz) for the first tone
in the MF symbol. This parameter can range from 20 to 10000 Hz.

freq2 The freq2 parameter specifies the frequency (Hz) for the second
tone in the MF symbol. This parameter can range from 20 to
10000 Hz.

ontime The ontime parameter specifies the duration of the MF symbol in
milliseconds. This parameter must be greater than zero.

2.11.6 Set_MFOffTime

Description:

The Set_MFOffTime function sets the time interval between consecutive MF symbols.

Function Prototype:

long Set_MFOffTime (long deviceid, float offtime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

offtime The offtime parameter specifies the time interval between MF
symbols (in milliseconds). This parameter must be greater than
zero.

AI-7280 DLL Programmers Guide 66

Advent Instruments Inc. Low Level DLL Function Reference

2.11.7 Send_MF

Description:

The Send_MF function transmits a sequence of up to 64 MF symbols on the telephone
line. The symbols parameter is a string of MF symbols to transmit. The levels,
frequencies, and durations for these symbols can be set using the Set_MFSymbol
function. The wait parameter indicates if this function should wait for the MF generator
to complete before returning control to the calling program.

The MF generator shares resources with the DTMF generator and also uses tone
generators C and D. The Send_MF function will interrupt any tones being generated
using tone generators C or D. The MF generator and the DTMF generator must both be
inactive before calling this function.

Function Prototype:

long Send_MF (long deviceid, char symbols[], long wait)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

symbols The symbols parameter should be a NULL terminated string of
MF symbols to transmit on the telephone line. MF symbols consist
of the digits “A” through “T” (not case sensitive). If the string
contains any other characters this function will return an error. The
length of this string must not exceed 64 characters.

wait If the wait parameter is non-zero then this function waits for the
MF generator to finish transmitting the digits before returning
control to the calling program. Otherwise, control is returned
immediately.

AI-7280 DLL Programmers Guide 67

Low Level DLL Function Reference Advent Instruments Inc.

2.11.8 Stop_MF

Description:

The Stop_MF function stops the MF generator.

Function Prototype:

long Stop_MF (long deviceid, float offtime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.11.9 Get_MFStatus

Description:

The Get_MFStatus function indicates if the MF generator is active (generating
symbols).

Function Prototype:

long Get_MFStatus (long deviceid, long *status)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

status The status value returns a non-zero value if the MF generator is
currently active (generating symbols). Otherwise the status
parameter returns zero.

AI-7280 DLL Programmers Guide 68

Advent Instruments Inc. Low Level DLL Function Reference

2.12 FSK Decoder Functions

2.12.1 Clear_FSKDecoder

Description:

The Clear_FSKDecoder function resets the FSK decoder to receive new data. This
function sets the internal write pointer to the beginning of the receive buffer so the next
byte decoded will be stored at index 1. This function should be called when the FSK
decoder is disabled.

Function Prototype:

long Clear_FSKDecoder (long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.12.2 Set_FSKDecThreshold

Description:

The Set_FSKDecThreshold function sets the minimum voltage threshold for the FSK
decoder (in volts-peak). Any FSK signals with peak amplitude lower than this voltage
will not be detected.

Function Prototype:

long Set_FSKDecThreshold (long deviceid, float threshold)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

threshold The threshold parameter specifies the minimum level (in volts
peak) required for an FSK signal to be decoded.

AI-7280 DLL Programmers Guide 69

Low Level DLL Function Reference Advent Instruments Inc.

2.12.3 Get_FSKDecMarkTime

Description:

The Get_FSKDecMarkTime function returns the number of seconds that a valid FSK
mark signal has been detected on the telephone line.

Function Prototype:

long Get_FSKDecMarkTime (long deviceid, float *marktime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

marktime The marktime parameter returns the number of seconds that a valid
FSK mark signal has been detected on the telephone line.

2.12.4 Start_FSKDecoder

Description:

The Start_FSKDecoder function enables the FSK decoder on the AI-7280. After this
function call the FSK decoder will decode any incoming FSK bytes and store them in
the FSK decoder buffer. These bytes can be read using the Get_FSKDecByte function.

Function Prototype:

long Start_FSKDecoder (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 70

Advent Instruments Inc. Low Level DLL Function Reference

2.12.5 Stop_FSKDecoder

Description:

The Stop_FSKDecoder function disables the FSK decoder on the AI-7280.

Function Prototype:

long Stop_FSKDecoder (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.12.6 Get_FSKDecNumBytes

Description:

The Get_FSKDecNumBytes function returns the number of decoded bytes in the FSK
decoder’s receive buffer. These bytes can be extracted using the Get_FSKDecByte
function.

Function Prototype:

long Get_FSKDecNumBytes (long deviceid, long *numbytes)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numbytes The numbytes parameter returns the number of decoded FSK bytes
in the FSK decoder receive buffer.

AI-7280 DLL Programmers Guide 71

Low Level DLL Function Reference Advent Instruments Inc.

2.12.7 Get_FSKDecByte

Description:

The Get_FSKDecByte function returns a byte from the receive buffer of the FSK
decoder. A status value is also returned with each byte indicating any errors that were
detected while the byte was being decoded.

Function Prototype:

long Get_FSKDecByte (long deviceid, long index, long *byteval, long
*bytestatus)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index parameter specifies which byte in the FSK decoder
buffer to return. This index value can range from 1 to 2047.

byteval The byteval parameter returns the value of the byte in the FSK
decoder receive buffer at the location indicated by the index
parameter.

bytestatus The bytestatus parameter returns the status value for the byte being
returned. The following table describes the meaning of the bits in
the status value.

bytestatus bit Meaning
bit 0 No Stop Bit. If this bit is set it indicates that

the FSK byte was decoded with an
incorrect stop bit value

bit 1 Level Drop. If this bit is set it indicates that
the FSK level dropped below the minimum
threshold while decoding the byte.

AI-7280 DLL Programmers Guide 72

Advent Instruments Inc. Low Level DLL Function Reference

2.13 DTMF Detector Functions

2.13.1 Set_DTMFDet

Description:

The Set_DTMFDet function sets the signal detection parameters for the DTMF
detector. The freqtoll property sets the frequency tolerance (in percent) for the DTMF
detector. The minlevel property sets the minimum required level for a DTMF digit to
be detected.

Function Prototype:

long Set_DTMFDet (long deviceid, float freqtoll, float minlevel)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

freqtoll The freqtoll parameter sets the frequency tolerance (in percent).
Any digits with frequencies that deviate from the nominal DTMF
frequencies by more that this percentage will be ignored. The
freqtoll parameter can range from 0 to 2 percent.

minlevel The minlevel parameter sets the minimum level (Vrms) required
for a DTMF digit to be detected. This parameter must be greater
than zero.

2.13.2 Start_DTMFDet

Description:

The Start_DTMFDet function enables the DTMF detector. Once this function is called
the DTMF detector will begin detecting DTMF digits on the telephone line. All
detected digits will be stored with levels, frequencies, and timing information. The
digits can be read using the Get_DTMFDetDigit function.

Function Prototype:

long Start_DTMFDet (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 73

Low Level DLL Function Reference Advent Instruments Inc.

2.13.3 Stop_DTMFDet

Description:

The Stop_DTMFDet function stops the DTMF detector. No further DTMF level or
frequency measurements will be made and the current DTMF measurements will be
frozen.

Function Prototype:

long Stop_DTMFDet (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.13.4 Wait_For_DTMF

Description:

The Wait_For_DTMF function waits for a DTMF digit to be detected before returning
control to the calling program. A maximum wait time must be specified to prevent
waiting forever. This maximum time can range from 0 to 100000 ms. This function
avoids time consuming polling loops when a DTMF digit is expected within a fixed
time interval. Note: for this function to work correctly the DTMF detector must be
started and there must be less than 31 DTMF digits recorded by the DTMF
detector. This function does not remove the digit from the detector and the details of
the digit can be extracted using the Get_DTMFDetDigit function.

Function Prototype:

long Wait_For_DTMF (long deviceid, long maxtime, long *digitcode)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

maxtime The maxtime parameter specifies the number of milliseconds to
wait for a new DTMF digit to be detected. This value can range
from 0 to 100,000 ms.

digitcode The digitcode parameter returns the digit code of a detected DTMF
digit. If no DTMF digits are detected then this value is set to zero.

AI-7280 DLL Programmers Guide 74

Advent Instruments Inc. Low Level DLL Function Reference

2.13.5 Get_DTMFDet

Description:

The Get_DTMFDet function returns the current level and frequency measurements
from the level meters and frequency counters in the DTMF detector. It also returns a
digit code of any DTMF digit detected.

Function Prototype:

long Get_DTMFDet (long deviceid, float *lofreq, float *lolevel, float *hifreq,
float *hilevel, long *digit)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

lofreq The lofreq parameter returns the current frequency measurement
(Hz) of the signals in the low frequency DTMF band.

lolevel The lolevel parameter returns the current level measurement
(Vrms) of the signals in the low frequency DTMF band.

hifreq The hifreq parameter returns the current frequency measurement
(Hz) of the signals in the high frequency DTMF band.

hilevel The hilevel parameter returns the current level measurement
(Vrms) of the signals in the high frequency DTMF band.

digit The digit parameter returns a digit code of the DTMF digit that
corresponds to the current level and frequency measurements. The
digit codes are listed in the following table

digit code DTMF Digit
0 No digit

 1- 9 1 – 9
10 0
11 *
12 #

13-16 A-D

AI-7280 DLL Programmers Guide 75

Low Level DLL Function Reference Advent Instruments Inc.

2.13.6 Get_DTMFDetNumDigits

Description:

Whenever a DTMF digit is detected, the level, frequency, and timing information is
stored in a FIFO for retrieval and analysis at a later time. The
Get_DTMFDetNumDigits function returns the number of DTMF digit records stored
in the DTMF detector. The digit information can be read out using the
Get_DTMFDetDigit function.

Function Prototype:

long Get_DTMFDetNumDigits (long deviceid, long *numdigits)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numdigits This parameter returns the number of DTMF digit records stored
in the DTMF detector.

2.13.7 Get_DTMFDetDigit

Description:

The Get_DTMFDetDigit function returns the level, frequency, and timing information
from a digit record in the DTMF detector FIFO. The index specifies which DTMF digit
record to read (from 0 to numdigits –1).

Function Prototype:

long Get_DTMFDetDigit (long deviceid, long index, float *lofreq, float
*lolevel, float *hifreq, float *hilevel, float *starttime, float *stoptime, long
*digit)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index parameter specifies which DTMF digit record in the
FIFO to read. The total number of records available can be
returned using the Get_DTMFDetNumDigits function. This index
can range from 0 to numdigits – 1. The record at index 0 is the
least recent record while the record at index numdigits-1 is the
most recent record.

lofreq The lofreq parameter returns the frequency measurement (Hz) for

AI-7280 DLL Programmers Guide 76

Advent Instruments Inc. Low Level DLL Function Reference

the low frequency tone of the recorded DTMF digit.

lolevel The lolevel parameter returns the level measurement (Vrms) for
the low frequency tone of the recorded DTMF digit.

hifreq The hifreq parameter returns the frequency measurement (Hz) for
the high frequency tone of the recorded DTMF digit.

hilevel The hilevel parameter returns the level measurement (Vrms) for
the high frequency tone of the recorded DTMF digit.

starttime The starttime parameter returns the time (in seconds) of the
beginning of the DTMF digit. Note: this value is based on the
timer internal to the AI-7280.

stoptime The stoptime parameter returns the time (in seconds) of the end of
the DTMF digit. Note: this value is based on the timer internal to
the AI-7280.

digit The digit parameter returns a digit code that corresponds to the
DTMF digit that was detected. The digit codes are listed in the
following table.

digit code DTMF Digit
0 No digit

 1- 9 1 – 9
10 0
11 *
12 #

13-16 A-D

2.13.8 Delete_DTMFDetDigits

Description:

This function deletes a specified number of DTMF records from the DTMF detector
FIFO. Records are always deleted from the top of the FIFO (low index) and new digits
are always added at the end of the FIFO (high index) to prevent accidental deletion of
newly received digits.

Function Prototype:

long Delete_DTMFDetDigits (long deviceid, long numdigits)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numdigits This parameter specifies the number of DTMF digit records to
delete from the DTMF detector. Records are always deleted from
the top of the FIFO (starting at index 0).

AI-7280 DLL Programmers Guide 77

Low Level DLL Function Reference Advent Instruments Inc.

2.14 Capture and Playback Functions

2.14.1 Start_ACCap

Description:

The Start_ACCap function starts recording the AC signals on the telephone line into
memory with a resolution of 16 bits per sample. The capture can be started in two
modes (corresponding to two different sampling rates) and record up to 229376
samples. The samples are stored sequentially in a buffer in the AI-7280 and can be read
out using the Get_ACCapSamples function. If the end of the capture buffer is reached
during a capture then the write index will roll-over and samples will continue to be
stored starting at location 0

Function Prototype:

long Start_ACCap (long deviceid, long mode, long startindex, long
numsamples)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

mode The mode parameter sets the sample rate for the AC capture. The
two modes are listed in the table below.

mode Sample Rate of Capture
0 39062 Hz
1 19531 Hz

startindex The startindex parameter sets the index in the AC capture buffer to

start recording. This index can range from 0 to 229375.

numsamples The numsamples parameter sets the number of samples to record.
This parameter is normally set to a value between 1 and 229376.
However, if this value is set to –1 then the samples will be
recorded continuously until the Stop_ACCap function is called.

AI-7280 DLL Programmers Guide 78

Advent Instruments Inc. Low Level DLL Function Reference

2.14.2 Stop_ACCap

Description:

The Stop_ACCap function stops an AC capture in progress.

Function Prototype:

long Stop_ACCap (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.14.3 Get_ACCapStatus

Description:

The Get_ACCapStatus function returns the number of samples remaining in an AC
capture. If the number of samples left is 0 then the AC capture has completed. If the
number of samples returned is negative, then the AC capture is continuing indefinitely
until it is stopped (by calling Stop_ACCap).

Function Prototype:

long Get_ACCapStatus (long deviceid, long *samplesleft)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

samplesleft The samplesleft property returns the number of samples remaining
in an active AC capture. If the samplesleft property is zero then the
AC capture is completed. If the samplesleft property is negative
then this implies that the capture is continuing indefinitely until it
is stopped using the Stop_ACCap function

AI-7280 DLL Programmers Guide 79

Low Level DLL Function Reference Advent Instruments Inc.

2.14.4 Get_ACCapSamples

Description:

The Get_ACCapSamples function reads a block of voltage samples from the AC
capture memory starting at a specified index and returns the values of the samples in
the samples[] array.

Function Prototype:

long Get_ACCapSamples (long deviceid, long startindex, long numsamples,
float samples[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

startindex The startindex property specifies the starting index of the block of
samples to read from the AC capture buffer. This index can range
from 0 to 229375.

numsamples The numsamples property specifies the number of samples to be
read from the AC capture buffer. This value can range from 1 to
229376.

samples[] The samples[] property is an array of floating point values that will
return the values of the samples in the AC capture buffer. The
samples will be stored sequentially from location 0 to
numsamples – 1.

Note: Before calling this function insure that the samples[]
array has been dimensioned to have at least numsamples
elements.

AI-7280 DLL Programmers Guide 80

Advent Instruments Inc. Low Level DLL Function Reference

2.14.5 Put_ACCapSamples

Description:

The Get_ACCapSamples function transfers the array of voltage samples (in samples [])
into the AC capture buffer. The numsamples property specifies the number of samples
to be transferred and the startindex specifies the starting location in the AC capture
buffer to store the samples.

Function Prototype:

long Put_ACCapSamples (long deviceid, long startindex, long numsamples,
float samples[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

startindex The startindex property specifies the starting index in the AC
capture buffer to begin storing samples at. This index can range
from 0 to 229375.

numsamples The numsamples property specifies the number of samples to be
transferred into the AC capture buffer. This value can range from 1
to 229376.

samples[] The samples[] property is an array of floating point values that
hold the values of the AC samples to be transferred into the AC
capture buffer. The samples will be read sequentially from location
0 to numsamples – 1.

Note: Before calling this function insure that the samples[]
array has been dimensioned to have at least numsamples
elements.

AI-7280 DLL Programmers Guide 81

Low Level DLL Function Reference Advent Instruments Inc.

2.14.6 Get_ACCapIndex

Description:

The Get_ACCapIndex function returns the location in the AC Capture buffer where the
next sample will be stored. This index value can be used to determine the position of a
captured AC signal in memory when the indefinite capture mode is used.

Function Prototype:

long Get_ACCapIndex (long deviceid, long *index)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index property returns the index into the AC capture buffer
where the next sample will be stored.

2.14.7 Play_ACCap

Description:

The Play_ACCap function begins playing back a sequence of samples from the AC
capture buffer onto the telephone line. Note: The samples will be played back on the
telephone line at a sample rate of 39062Hz.

Function Prototype:

long Play_ACCap (long deviceid, long startindex, long numsamples)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

startindex The startindex parameter specifies the starting index of the
samples to be played back on the telephone line

numsamples The numsamples parameter specifies the number of samples to be
played back on the telephone line. Normally this parameter is
between the values 1 and 229376, however, if this value is set to
–1 then the playback continues indefinitely until the
Stop_Playback function is called.

2.14.8 Get_PlaybackStatus

AI-7280 DLL Programmers Guide 82

Advent Instruments Inc. Low Level DLL Function Reference

Description:

The Get_PlaybackStatus function returns the number of samples remaining in an AC
capture playback. If the value returned is –1 then this indicates that the playback is
continuing indefinitely.

Function Prototype:

long Get_PlaybackStatus (long deviceid, long *samplesleft)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

samplesleft The samplesleft returns the number of samples remaining in the
AC playback. If the returned value is –1 then the playback is
continuing indefinitely.

2.14.9 Stop_Playback

Description:

The Stop_Playback function stops the playback of an AC capture.

Function Prototype:

long Stop_Playback (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 83

Low Level DLL Function Reference Advent Instruments Inc.

2.14.10 Start_DCCap

Description:

The Start_DCCap function starts sampling and recording the DC voltage and loop-
current into memory. The voltage and current sample are stored with 12-bit resolution
at a sample rate of 1000Hz. The DC capture buffer can hold a maximum of 8192
voltage and current samples. If the end of the capture buffer is reached during a capture
then the write index will roll-over and samples will continue to be stored starting at
location 0.

Function Prototype:

long Start_DCCap (long deviceid, long mode, long startindex, long
numsamples)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

startindex The startindex parameter sets the index in the DC capture buffer to
start recording. This index can range from 0 to 8191.

numsamples The numsamples parameter sets the number of samples to record.
This parameter is normally set to a value between 1 and 8192.
However, if this value is set to –1 then the samples will be
recorded continuously until the Stop_DCCap function is called.

2.14.11 Stop_DCCap

Description:

The Stop_DCCap function stops a DC capture in progress.

Function Prototype:

long Stop_DCCap (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 84

Advent Instruments Inc. Low Level DLL Function Reference

2.14.12 Get_DCCapStatus

Description:

The Get_DCCapStatus function returns the number of samples remaining in a DC
capture. If the number of samples left is 0 then the DC capture has completed. If the
number of samples returned is negative, then the DC capture is continuing indefinitely
until it is stopped using the Stop_DCCap function.

Function Prototype:

long Get_DCCapStatus (long deviceid, long *samplesleft)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

samplesleft The samplesleft property returns the number of samples remaining
in an active DC capture. If the samplesleft property is zero then the
DC capture is completed. If the samplesleft property is negative
then this implies that the capture is continuing indefinitely until it
is stopped using the Stop_DCCap function

AI-7280 DLL Programmers Guide 85

Low Level DLL Function Reference Advent Instruments Inc.

2.14.13 Get_DCCapSamples

Description:

The Get_DCCapSamples function reads a block of voltage and current samples from
the DC capture memory starting at a specified index and returns the values of the
samples in the voltage[] and current[] arrays.

Function Prototype:

long Get_DCCapSamples (long deviceid, long startindex, long numsamples,
float voltage[], float current[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

startindex The startindex property specifies the starting index of the block of
voltage and current samples to read from the DC capture buffer.
This index can range from 0 to 8191.

numsamples The numsamples property specifies the number of voltage and
current samples to be read from the DC capture buffer. This value
can range from 1 to 8192.

voltage[] The voltage [] property is an array of floating point values that will
return the values of the line voltage samples in the DC capture
buffer. The samples will be stored sequentially from location 0 to
numsamples – 1.

Note: Before calling this function insure that the voltage []
array has been dimensioned to have at least numsamples
elements.

current[] The current[] property is an array of floating point values that will
return the values of the loop current samples in the DC capture
buffer. The samples will be stored sequentially from location 0 to
numsamples – 1.

Note: Before calling this function insure that the voltage []
array has been dimensioned to have at least numsamples
elements.

AI-7280 DLL Programmers Guide 86

Advent Instruments Inc. Low Level DLL Function Reference

2.14.14 Get_DCCapIndex

Description:

The Get_DCCapIndex function returns the location in the DC Capture buffer where the
next sample will be stored. This index value can be used to calculate the location of
captured DC signals in memory when the indefinite capture mode is used.

Function Prototype:

long Get_DCCapIndex (long deviceid, long *index)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

index The index property returns the index into the DC capture buffer
where the next sample will be stored.

2.15 Digital I/O Functions

2.15.1 Get_Din

Description:

The Get_Din function gets the logic level of the two digital inputs on the AI-7280.

Function Prototype:

long Get_Din(long device, long * dinA, long *dinB)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

dinA The dinA parameter returns the logic level (0 or 1) of digital input
A.

dinB The dinB parameter returns the logic level (0 or 1) of digital input
B.

2.15.2 Set_DoutA

AI-7280 DLL Programmers Guide 87

Low Level DLL Function Reference Advent Instruments Inc.

Description:

The Set_DoutA function sets the logic level or special function mode for the digital
output A. If the value parameter is set to 0 or 1 the logic level of digital output A is set
to the corresponding logic level. If value is set to 2 then the logic level of output A will
track the hook switch status of the AI-7280.

Function Prototype:

long Set_DoutA(long device, long value)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

value The value parameter specifies the output logic level or special
function of digital output A.

value Digital Output A
0 Logic 0 (0V)
1 Logic 1 (5V)
2 Hook Status.

Off hook = Logic 1
On hook = Logic 0

2.15.3 Set_DoutB

Description:

The Set_DoutB function sets the logic level or special function mode for the digital
output B. If the value parameter is set to 0 or 1 the logic level of digital output B is set
to the corresponding logic level. If value is set to 2 then the logic level of output B will
track the current FSK decoder bit value.

Function Prototype:

long Set_DoutB (long device, long value)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

value The value parameter specifies the output logic level or special
function of digital output B.

value Digital Output B

AI-7280 DLL Programmers Guide 88

Advent Instruments Inc. Low Level DLL Function Reference

0 Logic 0 (0V)
1 Logic 1 (5V)
2 FSK decoder bit value

Mark = logic 1
Space = logic 0

2.15.4 Set_DoutC

Description:

The Set_DoutC function sets the logic level for the digital output C. If the value
parameter is set to 0 or 1 the logic level of digital output C is set to the corresponding
logic level.

Function Prototype:

long Set_DoutC (long device, long value)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

value The value parameter specifies the output logic level of digital
output C.

value Digital Output C
0 Logic 0 (0V)
1 Logic 1 (5V)

AI-7280 DLL Programmers Guide 89

Low Level DLL Function Reference Advent Instruments Inc.

2.16 Noise Generator Functions

2.16.1 Set_Noise

Description:

The Set_Noise function sets the level of the white noise generator in Vrms.

Function Prototype:

long Set_Noise(long device, float noiselevel)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

noiselevel The noise level property sets the level (in Vrms) of the noise
generator.

2.16.2 Start_Noise

Description:

The Start_Noise function starts the white noise generator on the AI-7280. The voltage
level of the noise generator can be set using the function Set_Noise.

Function Prototype:

long Start_Noise(long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 90

Advent Instruments Inc. Low Level DLL Function Reference

2.16.3 Stop_Noise

Description:

The Stop_Noise function stops the white noise generator on the AI-7280.

Function Prototype:

long Stop_Noise(long device)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 91

Low Level DLL Function Reference Advent Instruments Inc.

2.17 Metering Pulse Functions

2.17.1 Set_MeterPulse

Description:

The Set_MeterPulse function sets the parameters for the meter pulse generator.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Set_MeterPulse (long deviceid, float freq, float level, float duration ,
 float repeat)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

freq The freq parameter specifies the frequency (Hz) for the metering
pulses. This value can range from 20 to 18000Hz.

level The level parameter specifies the voltage level (Vrms) for the
metering pulses. This value can range from 0 to 4Vrms.

duration The duration parameter specifies the duration (ms) of the metering
pulses. This value can range from 1 to 1000000 ms.

repeat The repeat parameter specifies the time interval (ms) between
metering pulses. This value can range from 1 to 1000000 ms

AI-7280 DLL Programmers Guide 92

Advent Instruments Inc. Low Level DLL Function Reference

2.17.2 Get_MeterPulse

Description:

The Get_MeterPulse function returns the parameters for the meter pulse generator.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Get_MeterPulse (long deviceid, float *freq, float *level, float *duration ,
 float *repeat)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

freq The freq parameter returns the frequency (Hz) for the metering
pulses.

level The level parameter returns the voltage level (Vrms) for the
metering pulses.

duration The duration parameter returns the duration (ms) of the metering
pulses.

repeat The repeat parameter returns the time interval (ms) between
metering pulses.

2.17.3 Start_MeterPulse

Description:

The Start_MeterPulse function starts the meter pulse generator.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Start_MeterPulse (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 93

Low Level DLL Function Reference Advent Instruments Inc.

2.17.4 Stop_MeterPulse

Description:

The Stop_MeterPulse function stops the meter pulse generator.

Note: This function is only available if the AI-7280 is running software version 2.0
or greater!

Function Prototype:

long Stop_MeterPulse (long deviceid)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

2.17.5 Start_MeterPulseWithCount

Description:

This function causes the AI-7280 to generate a specific number of metering pulses

Note: This function is only available if the AI-7280 is running software version
2.12 or greater!

Function Prototype:

long Start_MeterPulseWithCount (long Deviceid, long Count)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

count This value should be set to the number of pulses to generate. A
negative value will cause metering pulses to be generated
indefinitely.

2.17.6 Get_MeterPulseCount

AI-7280 DLL Programmers Guide 94

Advent Instruments Inc. Low Level DLL Function Reference

Description:

This function returns the number of remaining metering pulses to generate

Note: This function is only available if the AI-7280 is running software version
2.12 or greater!

Function Prototype:

long Get_MeterPulseCount (long deviceid, long *Count)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

count This value retursns the number of pulses remaining to generate. A
negative value will cause metering pulses to be generated
indefinitely.

AI-7280 DLL Programmers Guide 95

Low Level DLL Function Reference Advent Instruments Inc.

2.18 Miscellaneous Functions

2.18.1 Load_UserWaveShape

Description:

The Load_UserWaveShape function allows the user to upload a custom wave shape
into the AI-7280. This user-defined wave shape can then be used as a tone shape or as
a ringing shape.

Function Prototype:

long Load_UserWaveShape(long deviceid, long numsamples, float samples[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

numsamples The numsamples parameter specifies the number of samples in the
user defined waveshape. The number of samples can range from 2
to 256.

samples The samples parameter is a pointer to an array of 32-bit floating
point values that contain the samples for the user defined wave
shape. The array must contain the number of samples specified by
the numsamples parameter.

AI-7280 DLL Programmers Guide 96

Advent Instruments Inc. Low Level DLL Function Reference

2.19 Script and Command Functions

2.19.1 Send_TextCommand

Description:

The Send_TextCommand function transmits a text command to the AI-7280 and
returns the response from the device. The commands are formatted specifically for the
AI-7280 and are not documented in this document; This function has been included for
custom application requirements please contact technical support for more
information on this function.

Function Prototype:

long Send_TextCommand (long deviceid, char command[64], long
expectresponse, char response[64])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

command This parameter should contain the specially formatted command to
send to the AI-7280. Please contact technical support for
information regarding command formatting.

expectresponse If non-zero, this function will wait for and return a response from
the device. Otherwise this function will terminate without waiting
for a response. Caution: most commands do require a response and
setting this value to 0 can cause errors.

response This will return the response from the device. Note: Before
calling this function insure that this string is allocated to be at
least 300 characters long. See Data Type Summary for
initialization details.

2.19.2 Get_ScriptMemAvail

Description:

The Get_ScriptMemAvail function returns the maximum length of a user composed
script that can be loaded into the AI-7280. This value only reflects the maximum length
allowed by the DLL implementation; this function doesn’t reflect the number of bytes
remaining in memory!

Function Prototype:

long Get_ScriptMemAvail (long *maxbytes)

AI-7280 DLL Programmers Guide 97

Low Level DLL Function Reference Advent Instruments Inc.

Function Parameters:

maxbytes This parameter returns the maximum length of a user defined
script that can be loaded into the AI-7280 in this version of the
DLL.

2.19.3 Get_FirstAvailGlobalReg

Description:

The Get_FirstAvailGlobalReg function returns the first global data pool location not
allocated to the DLL internal functions. User scripts should not access any global
registers below this value as it could cause unpredictable results.

Function Prototype:

long Get_FirstAvailGlobalReg (long *firstlocation)

Function Parameters:

firstlocation This parameter returns the first global data pool location not used
by the DLL. No user scripts should access any global registers
below this location.

2.19.4 Run_UserScript

Description:

The Run_UserScript function loads and runs a user compiled script onteh AI-7280. The
script must be first compiled using AI-Workbench. Please contact technical support for
more information on the specifics of the scripting language and features.

Important notes:

- Script lengths should not exceed the length returned by Get_ScriptMemAvail
- Calling this function will stop any currently executing user scripts
- User scripts should never access global data locations below the value

returned by Get_FirstAvailGlobalReg as this may cause unpredictable results

Function Prototype:

long Run_UserScript (long deviceid, char userscript[])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

userscript The userscript parameter should contain the compiled object code
generated by AI-Workbench.

AI-7280 DLL Programmers Guide 98

Advent Instruments Inc. Low Level DLL Function Reference

2.19.5 Control_Script

Description:

The Control_Script function will stop, halt, resume, or single stop a user script loaded
in the AI-7280.

Function Prototype:

long Control_Script (long deviceid, long action)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

action This value determines the action performed on the script
processor. The allowed values are:
 0 = stop (cannot be resumed)
 1 = halt (can be resumed)
 2 = resume
 3 = single step

2.19.6 Get_ScriptStatus

Description:

The Get_ScriptStatus function returns the current status of the user script executing on
the AI-7280.

Function Prototype:

long Get_ScriptStatus (long deviceid, long * scriptstatus)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

scriptstatus This value indicates the current status of the user script on the AI-
7280. The normal values are
 0 = stopped (cannot be resumed)
 1 = running
 2 = halted (can be resumed)
 3 = single step mode
 4 = waiting for interrupt

If any other value is returned it indicates that an error has occurred
while executing the script. Please contact technical support if you
encounter such and error code.

AI-7280 DLL Programmers Guide 99

Low Level DLL Function Reference Advent Instruments Inc.

2.19.7 Get_ScriptVariable

Description:

The Get_ScriptVariable function returns the value of a variable in the AI-7280’s
memory space. Values can be fetched from the script’s local data pool, the global data
pool, or from a processor register. Please contact technical support for more
information on the memory structure and usage.

Function Prototype:

long Get_ScriptVariable (long deviceid, long varnum, long variabletype, long
isstring, char value[64])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

varnum This value indicates the variable location in the selected data pool
to access

variabletype This value specifies which data pool to read the variable from. The
allowed values are:
 0 = Script processor data pool
 1 = Global data pool
 2 = Processor Register

isstring If non-zero then the location is read as a string

value The value parameter returns the value at the specified location in
string format.This string must be initialized to at least 200
characters before calling this function. See Data Type Summary
for initialization details.

AI-7280 DLL Programmers Guide 100

Advent Instruments Inc. Low Level DLL Function Reference

2.19.8 Put_ScriptVariable

Description:

The Put_ScriptVariable function sets the value of a variable in the AI-7280 script
memory space. Values can be fetched from the script’s local data pool, the global data
pool, or from a processor register. Please contact technical support for more
information on the memory structure and usage.

Note: Global Data Pool locations cannot be accessed below the value returned by
Get_FirstAvailGlobalReg!

Function Prototype:

long Put_ScriptVariable (long deviceid, long varnum, long variabletype, long
isstring, char value[64])

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

varnum This value indicates the variable location in the selected data pool
to access

variabletype This value specifies which data pool to write the variable to. The
allowed values are:
 0 = Script processor data pool
 1 = Global data pool
 2 = Processor Register

isstring If non-zero then the location is written as a string

value The value parameter should contain the value to be written (in
string form)

AI-7280 DLL Programmers Guide 101

Low Level DLL Function Reference Advent Instruments Inc.

2.20 Pulse Dialing Functions

2.20.1 Wait_For_PulseDial

Description:

This function waits for a single pulse dialing sequence to occur within a specific time
window and returns the number of pulses detected and basic timing information of the
detected sequence. This function reports the number of valid pulses detected up until
the first pulse that violates the timing requirements specified (which is usually the end
of the dialing sequence). More specific timing information can be extracted using the
Get_PulseDial_Stats function.

Function Prototype:

long Wait_For_PulseDial (long deviceid, long MaxTime, long MaxBreak,
long MaxMake, long *NumPulses, float *StartTime, float *StopTime)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

MaxTime This specifies the maximum amount of time (ms) to wait for a
pulse dialing sequence to begin.

MaxBreak This value specifies the maximum length of a break interval (on-
hook) during a pulse dialing sequence. A break interval longer
than this value will cause the function to return immediately, and
report the number of pulses detected up until that time.

MaxMake This value specifies the maximum length of a make interval (off-
hook) during a pulse dialing sequence. A make interval longer
than this value will cause the function to return immediately, and
report the number of pulses detected up until that time.

NumPulses This returns the number of valid pulses detected in the pulse
dialing sequence. If no pulse dialing was detected this will return
0. If a single pulse violates the maximum timing requirements
MaxBreak or MaxMake then this may report fewer pulses than
were actually present since the function returns immediately when
such a timing violation occurs.

StartTime If a valid pulse dialing sequence was detected, this will return the
time when the first break interval started (first on-hook transition.)

StopTime If a valid pulse dialing sequence was detected, this will return the
time when the last break interval ended (last off-hook transition).

AI-7280 DLL Programmers Guide 102

Advent Instruments Inc. Low Level DLL Function Reference

2.20.2 Get_PulseDial_Stats

Description:

This function returns timing statistics for the last pulse dialing sequence detected by the
Wait_For_PulseDial function.

Function Prototype:

long Get_PulseDial_Stats (long deviceid, long *NumPulses, float *AvgBreak,
float *MaxBreak, float *MinBreak, float *AvgMake, float *MaxMake, float
*MinMake)

Function Parameters:

deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

NumPulses This returns the number of pulses detected in the last call to
Wait_For_PulseDial. If this value is 0 then the remaining statistics
must be ignored.

AvgBreak This returns the average duration (seconds) of the break intervals
in the pulse dialing sequence.

MaxBreak This returns the duration (seconds) of the longest break interval in
the pulse dialing sequence

MinBreak This returns the duration (seconds) of the shortest break interval in
the pulse dialing sequence.

AvgMake This returns the average duration (seconds) of the make intervals
in the pulse dialing sequence.

MaxMake This returns the duration (seconds) of the longest make interval in
the pulse dialing sequence.

MinMake This returns the duration (seconds) of the shortest make interval in
the pulse dialing sequence.

AI-7280 DLL Programmers Guide 103

CallerID Functions Advent Instruments Inc.

3 CallerID Functions

The following DLL functions have been added to the AI-7280 DLL to allow the user to
easily generate and send CallerID sequences without calling the lower-level AI-7280
functions. Unlike the normal AI-7280 DLL function calls these functions are global and
affect all connected AI-7280 devices.

3.1 Physical Layer Function Calls
The physical layer function calls set up the signal levels, frequencies, etc. for the signals
used in the CallerID sequences. Note: The settings for the physical layer function calls do
not take effect until the CallerID sequence is sent. Since the CallerID functions are
global, changing the physical layer settings affects the CallerID sequences for all
connected AI-7280s.

3.1.1 CID_Set_FSK

Description:

This function sets the levels, frequencies, and baud rate for the FSK data sent in the
CallerID sequence. Note: these settings do not take effect until a CallerID sequence is
started on an AI-7280 using the CID_Send function.

Function Prototype:

long CID_Set_FSK (float MarkLevel, float MarkFreq, float SpaceLevel, float
SpaceFreq, float Baud)

Function Parameters:

marklevel This sets the level (Vrms) of the mark tone used to in the FSK data
portion of the CallerID sequence

markfreq

This parameter sets the level (Vrms) of the space tone used in the
FSK data portion of the CallerID sequence

spacefreq

baud

This parameter sets the frequency (Hz) of the mark tone used in
the FSK data portion of the CallerID sequence

spacelevel

This parameter sets the frequency (Hz) of the space tone used in
the FSK data portion of the CallerID sequence
This parameter sets the baud rate used in the FSK data portion of
the CallerID Sequence

AI-7280 DLL Programmers Guide 104

Advent Instruments Inc. CallerID Functions

3.1.2 CID_Set_DTAS

Description:

This function sets the levels, frequencies, and timing of the Dual Tone Alerting Signal
(DTAS) signal used in the CallerID sequence. (Note: this is refered to as CAS in the
Belcore terminology). Note: these changes are not applied until the CallerID sequence
is started using the CID_Send function.

Function Prototype:

long CID_Set_DTAS ALIAS (float Freq1, float Freq2, float Level1, float
Level2, float OnTime)

Function Parameters:

freq1 This parameter sets the frequency (Hz) of the first tone in the
DTAS signal

freq2 This parameter sets the frequency (Hz) of the second tone in the
DTAS signal

level1 This parameter sets the level (Vrms) of the first tone in the DTAS
signal.

level2 This parameter sets the level (Vrms) of the second tone in the
DTAS signal.

ontime This parameter sets the duration (ms) of the DTAS signal

3.1.3 CID_Set_Ring

Description:

This function sets the level, frequency, etc for the ringing signal applied during the
CallerID sequences. Note: These changes do not take effect until the CallerID sequence
is started using the CID_Send function.

Function Prototype:

long CID_Set_Ring (float Freq, float Level, float DC, long WaveShape, float
StartPhase)

Function Parameters:

freq This parameter sets the frequency (Hz) of the ringing pulse

level This parameter sets the level (Vrms) of the ringing pulse

dc This parameter sets the DC offset to be applied during the ringing
pulse

waveshape This parameter sets the waveshape for the RPAS signal. This
parameter accepts the same values as the waveshape parameter in
the Set_Ring function.

startphase This parameter sets the starting phase for each ringing burst
generated in the CallerID sequence. Note the RPAS starting phase
can be set independently.

AI-7280 DLL Programmers Guide 105

CallerID Functions Advent Instruments Inc.

3.1.4 CID_Set_RingCadence

Description:

This function sets the ringing cadence settings for generating more complicated ringing
patterns. This function allows each ringing burst to contain up to 3 different ringing
pulses each of which can be programmed to different lengths and inter-burst times.

Function Prototype:

long CID_Set_RingCadence (long NumPulses, float OnTime1, float
OffTime1, float OnTime2, float OffTime2, float OnTime3, float OffTime3)

Function Parameters:

numpulses This parameter sets the number of pulses (1 to 3) to generate in
each ringing burst.

ontime1 This parameter sets the duration (ms) of the first ringing pulse

offtime1 This parameter sets the time interval from the first to second
ringing pulse. If the number of pulses is set to 1 then this
parameter sets the time interval from the ringing pulse to the next
ringing burst.

ontime2 This parameter sets the duration of the second ringing pulse. If the
number of pulses is set to less than two then this parameter is
ignored.

offtime2 This parameter sets the time interval between the second and third
ringing pulse. If the number of ringing pulses is set to less than 2
then this parameter is ignored. If 2 pulses are to be generated then
this parameter sets the time from the second pulse to the start of
the next ringing burst.

ontime3 This parameter sets the duration of the third ringing pulse. If the
number of ringing pulses is set to less than 3 then this parameter is
ignored.

offtime3 This parameter sets the time interval between the third ringing
pulse and the next ringing burst. If the number of ringing pulses is
set to less than 3 then this parameter is ignored.

3.1.5 CID_Set_NumRings

Description:

This function sets the total number of ringing bursts to generate during the CallerID
sequence (if ringing is a valid signal in the selected signaling type)

Function Prototype:

long CID_Set_NumRings (long NumRings)

AI-7280 DLL Programmers Guide 106

Advent Instruments Inc. CallerID Functions

Function Parameters:

NumRings This parameter sets the number of ringing bursts to generate
during the CallerID sequence

3.1.6 CID_Set_DTMF

Description:

This function sets the frequencies, levels, and timing for the DTMF portion of CallerID
sequences. These parameters only affect DTMF callerID sequences.

Function Prototype:

long CID_Set_DTMF (float RowLevel, float ColumnLevel, float OnTime,
float OffTime, float FreqOffSet)

Function Parameters:

RowLevel This parameter sets the level (Vrms) for the tone corresponding to
the row DTMF frequencies

ColumnLevel This parameter sets the level (Vrms) for the tone corresponding to
the column DTMF frequencies

OnTime This parameter specified the duration (ms) for each of the DTMF
digits in the CallerID sequence

OffTime This parameter specifies the inter-digit timing (ms) for the DTMF
digits in the CallerID sequence

FreqOffset This parameter sets the frequency offset (%) for the DTMF digits
in the CallerID sequence

3.1.7 CID_Set_RPAS

Description:

This function sets the level, frequency, and timing of the Ringing Pulse Alerting Signal
(RPAS) signal used in the CallerID sequence.

Function Prototype:

long CID_Set_RPAS(float Freq, float Level, float DC, float OnTime, long
WaveShape, float StartPhase)

Function Parameters:

freq This parameter sets the frequency (Hz) of the ringing pulse

level This parameter sets the level (Vrms) of the ringing pulse

dc This parameter sets the DC offset to be applied during the ringing
pulse

AI-7280 DLL Programmers Guide 107

CallerID Functions Advent Instruments Inc.

waveshape This parameter sets the waveshape for the RPAS signal. This

parameter accepts the same values as the waveshape parameter in
the Set_Ring function.

startphase This parameter sets the starting phase for the RPAS signal

3.2 CallerID Timing/Signalling Functions
The following functions specify the timing parameters for the CallerID signaling
sequences.

3.2.1 CID_Set_TimingToRing

Description:

This function sets the timing from the previous signaling element to the start of the first
ringing burst.

Function Prototype:

long CID_Set_TimingToRing (float ms)

Function Parameters:

ms This parameter sets the time from the previous signaling element
to the start of the first ringing burst

3.2.2 CID_Set_TimingToData

Description:

This function sets the timing from the previous signaling element to the start of the
CallerID data.

Function Prototype:

long CID_Set_TimingToData (float ms)

Function Parameters:

ms This parameter sets the time from the previous signaling element
to the start of the CallerID data

AI-7280 DLL Programmers Guide 108

Advent Instruments Inc. CallerID Functions

3.2.3 CID_Set_TimingToDTAS

Description:

This function sets the timing from the previous signaling element to the start of the
Dual Tone Alerting Signal (DTAS) signaling ellement.

Function Prototype:

long CID_Set_TimingToDTAS (float ms)

Function Parameters:

ms This parameter sets the time from the previous signaling element
to the start of the DTAS

3.2.4 CID_Set_TimingToLineReverse

Description:

This function sets the timing from the previous signaling element to the line reversal
signaling ellement.

Function Prototype:

long CID_Set_TimingToLineReverse (float ms)

Function Parameters:

ms This parameter sets the time from the previous signaling element
to the line reversal

3.2.5 CID_Set_HookTimeout

Description:

This function sets the maximum time to wait for detecting the hookswitch in the
relavent CallerID signalling type.

Function Prototype:

long CID_Set_HookTimeout (float HookTimeout)

Function Parameters:

HookTimeout This parameter specifies the time (ms) to wait for a change in the
hook-switch state

3.2.6 CID_Set_ACKDetector

AI-7280 DLL Programmers Guide 109

CallerID Functions Advent Instruments Inc.

Description:

This function sets the timing and detection parameters for the ACK detector used in the
TypeII CallerID signaling.

Function Prototype:

long CID_Set_ACKDetector (long ACKTimeout, char *ACKDigits, float
MinLevel, float FreqTol)

Function Parameters:

ACKTimeout This parameter sets the maximum time to wait (ms) for the
reception of the ACK signal.

ACKDigits This string contains a digit for each of the acceptable DTMF digits
that are acceptable ACK signals. Typically this string should be set
to “AD”

MinLevel This parameter sets the minimum level (Vrms) for the DTMF
detector used when detecting the ACK signal.

FreqTol This parameter sets the allowable frequency deviation of the ACK
signal (%)

3.2.7 CID_Set_OSI_Duration

Description:

This function specifies the duration of the OSI generated during the CallerID sequence.

Function Prototype:

long CID_Set_OSI_Duration (float Duration)

Function Parameters:

Durationt This parameter specifies the duration of the OSI generated during
the CallerID signalling sequence.

AI-7280 DLL Programmers Guide 110

Advent Instruments Inc. CallerID Functions

3.3 CallerID Message Functions
The following functions build the contents of the CallerID messages and transmit the data
with different signalling types.

3.3.1 CID_Set_MessageFormat

Description:

This function sets the formatting options for the FSK data sent during the CallerID
sequence.

Function Prototype:

long CID_Set_MessageFormat (long CSBits, long MarkBits,long
MarkOutBits, long StopBits)

Function Parameters:

CSBits This parameter sets the number of channel seizure bits sent before
the FSK data.

MarkBits This parameter sets the number of mark bits sent after the channel
seizure and before the FSk data

MarkOutBits This parameter sets the number of mark bits sent after the FSK
data

StopBits This parameter sets the number of stop bits for each byte

3.3.2 CID_Set_MessageParity

Description:

This function sets the parity for the character portions of the CallerID messages. See
the CallerID message generation functions to see which arguments have parity applied.

Function Prototype:

long CID_Set_MessageParity (long MsgParity)

Function Parameters:

MsgParity This parameter controls the parity setting for the character
arguments in the CallerID messages. The allowed settings are as
follows.

parity Value Parity Setting
0 No Parity – 8 bits per character
1 Odd Parity – 7 bits per characater
2 Even Parity – 7 bits per character

AI-7280 DLL Programmers Guide 111

CallerID Functions Advent Instruments Inc.

Check function documentation for which arguments have the
parity setting applied.

3.3.3 CID_ClearMessage

Description:

This function clears the CallerID data from memory. This function only affects the
contents of the CallerID data, this function does not affect any of the physical
parameters.

Function Prototype:

long CID_ClearMessage ()

AI-7280 DLL Programmers Guide 112

Advent Instruments Inc. CallerID Functions

3.3.4 CID_SDMF_Number

Description:

This function creates an SDMF calling number CallerID message based on the
CallingNumber and DateTime parameters.

Function Prototype:

long CID_SDMF_Number (char DateTime[], char CallingNumber[])

Function Parameters:

DateTime This parameter specifies the date and time of the CallerID message
in an 8 character string formatted as follows:

MMDDHHmm

MM: is the month represented as an ASCII number string with
valid range from “01” to “12”

DD: is the day represented as an ASCII number string with valid
range from “01” to “31”

HH: is the hour represented as an ASCII number string with valid
range from “00” to “23”

mm: is the minute represented as an ASCII number string with
valid range from “00” to “59”

This parameter will have the message parity setting applied

CallingNumber This parameter is a string (typically up to 24 digits) which contains
the calling telephone number. ie “5551234”

This parameter will have the message parity setting applied

AI-7280 DLL Programmers Guide 113

CallerID Functions Advent Instruments Inc.

3.3.5 CID_SDMF_Absence

Description:

This function creates an SDMF callerID message with the calling number absent. The
message contains a reason for the absence of the calling number.

Function Prototype:

long CID_SDMF_Absence (char DayTime[], char Reason[])

Function Parameters:

DateTime This parameter specifies the date and time of the CallerID message
in an 8 character string formatted as follows:

MMDDHHmm

MM: is the month represented as an ASCII number string with
valid range from “01” to “12”

DD: is the day represented as an ASCII number string with valid
range from “01” to “31”

HH: is the hour represented as an ASCII number string with valid
range from “00” to “23”

mm: is the minute represented as an ASCII number string with
valid range from “00” to “59”

This parameter will have the message parity setting applied

Reason This parameter specifies the reason for the absence of the calling
number. Typically this parameter is set to “P” to indicate the
number is private, or “O” to indicate the number is unavailable.

This parameter will have the message parity setting applied

3.3.6 CID_SDMF_VMWI

Description:

This function creates an SDMF Visual Message Waiting Indication (VMWI) message.

Function Prototype:

long CID_SDMF_VMWI (long Activate)

Function Parameters:

Activate If non-zero then the visual message-waiting indicator is activated.
If zero then the visual message-waiting indicator is de-activated.

AI-7280 DLL Programmers Guide 114

Advent Instruments Inc. CallerID Functions

This parameter will have the message parity setting applied

3.3.7 CID_MDMF_Set_MessageType

Description:

This function sets the message type byte for an MDMF CallerID message.

Function Prototype:

long CID_MDMF_Set_MessageType (long MessageType)

Function Parameters:

MessageType This value should contain the message type for the MDMF
message. See the appropriate CallerID standard document for
allowed values.

3.3.8 CID_MDMF_Add_Parameter

Description:

This function insterts a generic MDMF parameter to the current CallerID data. The
parameter consists of a parameter type and a series of bytes. The function should be
passed an address to the start of the byte data (indicated here as a character pointer) and
the number of bytes contained in that location. This function does not apply the parity
setting to any of the arguments.

Function Prototype:

long CID_MDMF_Add_Parameter (long ParamType, char *ByteContents,
long NumBytes)

Function Parameters:

ParamType This parameter should contain the value of the MDMF parameter
type for the specified argument.

ByteContents This parameter should point to the first byte in MDMF parameter
data. Note: This parameter can contain non-printable and NULL
characters since the number of bytes to be copied is specified by
the NumBytes parameter.

NumBytes This parameter specifies the number of bytes in the MDMF
parameter.

AI-7280 DLL Programmers Guide 115

CallerID Functions Advent Instruments Inc.

3.3.9 CID_MDMF_Add_DateTime

Description:

This function adds the Date and Time parameter to the current MDMF message.

Function Prototype:

long CID_MDMF_Add_DateTime (char DateTime[])

Function Parameters:

DateTime This parameter specifies the date and time of the CallerID message
in an 8 character string formatted as follows:

MMDDHHmm

MM: is the month represented as an ASCII number string with
valid range from “01” to “12”

DD: is the day represented as an ASCII number string with valid
range from “01” to “31”

HH: is the hour represented as an ASCII number string with valid
range from “00” to “23”

mm: is the minute represented as an ASCII number string with
valid range from “00” to “59”

This parameter will have the message parity setting applied

3.3.10 CID_MDMF_Add_CallingNum

Description:

This function adds the Calling Number (Calling Line Identity) parameter to the current
MDMF message.

Function Prototype:

long CID_MDMF_Add_CallingNum (char CallingNumber[])

Function Parameters:

LineIdent This parameter should contain an ASCII string containing the
telephone number of the calling party (ie. “5551234”)

This parameter will have the message parity setting applied

AI-7280 DLL Programmers Guide 116

Advent Instruments Inc. CallerID Functions

3.3.11 CID_MDMF_Add_NumAbsence

Description:

This function adds the Reason for Absence of Calling Number (Calling Line Identity)
parameter to the current MDMF message.

Function Prototype:

long CID_MDMF_Add_NumAbsence (char Reason[])

Function Parameters:

Reason This parameter should contain a code indicating the reason for the
absence of the calling number. Typically the character “O”
indicates that the number is unavailable, and the character “P”
indicates that the number is private.

This parameter will have the message parity setting applied

3.3.12 CID_MDMF_Add_CallingName

Description:

This function adds the Calling Name parameter to the current MDMF message.

Function Prototype:

long CID_MDMF_Add_CallingName (char CallingName[])

Function Parameters:

CallingName This parameter should contain an ASCII string indicating the name
of the calling party. (ie. “John Smith”)

This parameter will have the message parity setting applied

3.3.13 CID_MDMF_Add_NameAbsence

Description:

This function adds the Reason for Absence of Calling Name to the current MDMF
message.

Function Prototype:

long CID_MDMF_Add_NameAbsence (char Reason[])

Function Parameters:

Reason This parameter should contain a code indicating the reason for the

AI-7280 DLL Programmers Guide 117

CallerID Functions Advent Instruments Inc.

absence of the calling party name. Typically “P” indicates that the
name is private, and “O” indicates the name is unavailable.

This parameter will have the message parity setting applied

3.3.14 CID_MDMF_Add_VisualInd

Description:

This function adds the Visual Indicator parameter to the current MDMF message.

Function Prototype:

long CID_MDMF_Add_VisualInd (long Activate)

Function Parameters:

Activate If non-zero, then the visual indicator will be activated. If this
parameter is set to zero then the visual indicator will be
deactivated.

3.3.15 CID_Send

Description:

This function sends the current CallerID using a specified signallling type. The
signaling type defines the signals and sequence for delivering the CallerID information.

Function Prototype:

long CID_Send (long DeviceId, long SignalType, long *DataSent)

Function Parameters:

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

SignalType This parameter specifies the signaling type for delivering the
CallerID data. See the section 3.4 for more information.

DataSent This parameter returns a non-zero value if the CallerID data was
transmitted successfully. This is usefull for determining if the
CallerID sequence was successful when the signalling type
requires certain conditions before sending data.

AI-7280 DLL Programmers Guide 118

Advent Instruments Inc. CallerID Functions

3.3.16 CID_Get_ACK_Info

Description:

If a DTMF ACK digit was detected during the CallerID sequence then this function
will return all the detected information on the digit. This function will return the digit
information even if the digit was not one of the qualified ACK digits.

Function Prototype:

long CID_Get_ACK_Info (char *DetectedDigit, float *RowFreq , float *
ColumnFreq , float *RowLevel, float *ColumnLevel, float *StartTime, float *
StopTime)

Function Parameters:

DetectedDigit This parameter will return a single ASCII character representing
the ACK digit detected. If no ACK is detected then this parameter
will be set to space (decimal 32)

RowFreq This returns the frequency (Hz) of the row tone in the ACK signal

ColumnFreq This returns the frequency (Hz) of the column tone in the ACK
signal

RowLevel This returns the level (Vrms) of the row tone in the ACK signal

ColumnLevel This returns the level (Vrms) of the column tone in the ACK signal

StartTime This returns a time stamp of the start of the ACK digit

StopTime This returns a time stamp of the end of the ACK digit

3.3.17 CID_Get_NumMessageBytes

Description:

This function returns the number of bytes in the current FSK based CallerID message.

Function Prototype:

long CID_Get_NumMessageBytes (long *NumBytes)

Function Parameters:

Numbytes This parameters returns the number of bytes in the current FSK
based CallerID message.

AI-7280 DLL Programmers Guide 119

CallerID Functions Advent Instruments Inc.

3.3.18 CID_Get_MessageByte

Description:

This function returns the value of a byte in the current FSK based CallerID message.

Function Prototype:

long CID_Get_MessageByte (long Index, long *Value)

Function Parameters:

Index This parameter indicates which byte to read from the FSK data.
This value can range from 1 to NumBytes.

Value This parameter returns the value of the indexed byte in the FSK
data

3.3.19 CID_Set_MessageByte

Description:

This function sets the value of a byte in the current FSK based CallerID message.

Function Prototype:

long CID_Set_MessageByte (long Index , long Value)

Function Parameters:

Index This parameter indicates which byte to write in the FSK data. This
value can range from 1 to NumBytes.

Value This value (0-255) is stored in the indexed location in the FSK
data.

3.3.20 CID_Get_CheckSum

Description:

This function gets the value of the checksum for the currently generated FSK CallerID
message.

Function Prototype:

long CID_Get_CheckSum (long Value)

Function Parameters:

Value The parameter is set to the value of the checksum for the currently
generated FSK message.

AI-7280 DLL Programmers Guide 120

Advent Instruments Inc. CallerID Functions

3.3.21 CID_Set_CheckSum

Description:

This function sets the value of the checksum for the currently generated FSK CallerID
message.

Function Prototype:

long CID_Set_CheckSum (long Value)

Function Parameters:

Value The parameter sets to the value (0 to 255) of the checksum for the
currently generated FSK message.

3.3.22 CID_DTMF_Set_StopCode

Description:

This function sets the value of the stop-code for the DTMF based CallerID Message.
This stopcode is appended to the end of the DTMF parameters.

Function Prototype:

long CID_DTMF_Set_StopCode (char StopCode[])

Function Parameters:

StopCode This parameter should be set to the DTMF character used to
terminate the DTMF CallerID message.

3.3.23 CID_DTMF_AddParameter

Description:

This function adds a parameter to the DTMF CallerID message. Each Parameter
consists of a StartCode and parameter consisiting of a string of DTMF digits.

Function Prototype:

long CID_DTMF_AddParameter (char StartCode[], char Param[])

Function Parameters:

StartCode This parameter should be set to a DTMF character used as a start
code for the current parameter.

Param This parameter should contain a string of DTMF digits containing
the information for the DTMF CallerID parameter.

AI-7280 DLL Programmers Guide 121

Advent Instruments Inc. CallerID Functions

3.4 CallerID Signalling Types

The CID_Send function supports transmission of CallerID information using a variety of
different signalling types. The supported signalling types are:

Signal Type Value Description

0 Load Data Only - This signalling type simply loads the generated
FSK message into the AI-7280. Additional code will be required to
transmit the CallerID message.

1 Send Data - This signalling type simply transmits the FSK/DTMF
data with no other signals generated.

2 Send Data after Ring - This signalling type will generate a single
ring, transmit the FSK/DTMF data, and then continue ringing (if
enabled)

3 Send Data after OSI - This signalling type will generate an Open
Switching Interval (OSI), transmit the FSK/DTMF data, and then
generate ringing (if enabled).

4 Send Data after DTAS - This signalling type will generate the
Dual Tone Alerting Signal (DTAS), transmit the FSK/DTMF data,
and then generate ringing (if enabled)

5 Send Data after Line Reverse - This signalling type will reverse
the telephone line, send the FSK/DTMF data, return the telephone
line to the normal polarity, and then generate ringing (if enabled)

6 Send Data after Line Reverse, DTAS - This signalling type will
reverse the telephone line polarity, send the DTAS signal, transmit
the FSK/DTMF CallerID, return the telephone line to the normal
polarity, and then generate ringing (if enabled)

7 Send Data after RPAS - This signalling type will generate
Ringing Pulse Alerting Signal (RPAS), transmit the FSK/DTMF
data, and then generate ringing (if enabled).

8 Send Data after DTAS, ACK -This signaling type will generate
the DTAS signal, wait for the ACK signal, and then transmit the
FSK/DTMF data. This signalling type does not generate ringing.

9 Send Data after Line Reverse, Off Hook - This signalling type
will reverse the telephone line polarity, wait for the CPE/TE to go
off-hook, transmit the FSK/DTMF data, wait for the CPE/TE to go
back on-hook, return the telephone line to normal polarity, and
then generate ringing (if enabled).

The timing relationships between each of the generated signals in the signalling types can
be set using the CallerID timing function defined in Section 3.2. Each of the timing
functions specifies the time from the end of the previous signal to the start of the defined
signal.

AI-7280 DLL Programmers Guide 123

CallerID Functions Advent Instruments Inc.

3.5 CallerID Transmission Timing Fuctions
The following functions are valid after a call to CID_Send and return time stamps
associated with the start of signals sent during a CallerID transmission. These are
especially useful when determining delays between DTAS, ACK, and FSK data.

3.5.1 CID_Get_DTAS_StartTime

Description:

This function returns a time stamp corresponding to the start of the DTAS signal sent
in the last CallerID transmission. This is valid only after a successful call to CID_Send
where the signaling type generates DTAS.

Function Prototype:

float CID_Get_DTAS_StartTime()

Return Value
 Time stamp corresponding to the start of DTAS in the last CallerID

transmission or a negative value if no such signal was sent.

3.5.2 CID_Get_FSK_StartTime

Description:

This function returns a time stamp corresponding to the start of the FSK signal sent in
the last CallerID transmission. This is valid only after a successful call to CID_Send
where data is sent using FSK (not DTMF)

Function Prototype:

float CID_Get_FSK_StartTime ()

Return Value
 Time stamp corresponding to the start of FSK in the last CallerID transmission

or a negative value if no such signal was sent.

AI-7280 DLL Programmers Guide 124

Advent Instruments Inc. SMS Functions

4 SMS Functions

4.1 Physical Layer/Timing Functions

4.1.1 SMS_Set_FSK

Description:

This function sets the levels and frequencies for the FSK data in the SMS messages.

Function Prototype:

long SMS_Set_FSK (float MarkLevel, float MarkFreq, float SpaceLevel, float
SpaceFreq, float Baud)

Function Parameters:

MarkLevel This sets the level (Vrms) of the mark tone used to in the SMS
transmissions

MarkFreq This parameter sets the frequency (Hz) of the mark tone used in
the SMS transmissions

SpaceLevel This parameter sets the level (Vrms) of the space tone used in the
SMS transmissions

SpaceFreq This parameter sets the frequency (Hz) of the space tone used in
the SMS transmissions

Baud This parameter sets the baud rate used in the SMS transmissions

4.1.2 SMS_Reset_Timer

Description:

This function resets the timer used for timing the SMS transmissions and SMS receiver

Function Prototype:

long SMS_Reset_Timer(long Deviceid)

AI-7280 DLL Programmers Guide 125

SMS Functions Advent Instruments Inc.

Function Parameters:

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned Open_Device.

4.2 SMS Message TX/RX Functions

4.2.1 SMS_Set_TXMessageFormat

Description:

This function sets some of the FSK message properties for transmiting an SMS
message.

Function Prototype:

long SMS_Set_TXMessageFormat (long CSBits, long MarkBits, long
MarkOutBits, long StopBits)

Function Parameters:

CSBits This value sets the number of channel seizure bits to send before
the message

MarkBits This value sets the number of mark bits transmitted before the data
portion of the message

MarkOutBits This value sets the number of mark bits that are transmitted after
the data portion of the message

StopBits This value sets the length of each stop bit in the FSK data.

4.2.2 SMS_Set_RXProtocol

Description:

This function sets the SMS protocol used by the SMS receiver. If protocol 1 is
specified then the receiver simply looks for mark followed by at least one byte of data.
If protocol 2 is specified then requires channel seizure, followed by a mark signal,
optionally followed by one or more bytes of data.

Function Prototype:

long SMS_Set_RXProtocol (long Protocol)

Function Parameters:

Protocol This parameter sets the protocol for the SMS receiver. This value
can be set to 1 or 2 for protocol 1 and 2 respectively

AI-7280 DLL Programmers Guide 126

Advent Instruments Inc. SMS Functions

4.2.3 SMS_Set_TXMessage

Description:

This function specifies the contents of the SMS message to transmit. Note: This
function sets the data to be transmitted to all connected AI-7280 devices.

Function Prototype:

long SMS_Set_TXMessage (long DLLMsgType, char *TLData, long
NumTLBytes)

Function Parameters:

DLLMsgType This parameter sets the Data Link Layer (DLL) message type for
the SMS message.

TLData This parameter should point to the first location in an array of
bytes containing the contents of the Transfer Layer (TL) message.

NumTLBytes This parameter specifies the number of bytes to be copied from the
TLData location

4.2.4 SMS_Get_NumTXMessageBytes

Description:

This function returns the total number of FSK data bytes to be transmitted in the
current SMS message.

Function Prototype:

long SMS_Get_NumTXMessageBytes (long NumBytes)

Function Parameters:

NumBytes This parameter returns the number of bytes in the currently
generated SMS message

AI-7280 DLL Programmers Guide 127

SMS Functions Advent Instruments Inc.

4.2.5 SMS_Get_TXMessageByte

Description:

This function returns a single byte from the currently generated SMS message.

Function Prototype:

long SMS_Get_TXMessageByte(long Index, long *ByteValue)

Function Parameters:

Index This parameter specifies the byte to return from the currently
generated SMS message. This value should range from 1 to
NumBytes

ByteValue This parameter returns the value at the specified index in the
currently generated SMS message

4.2.6 SMS_Set_TXMessageByte

Description:

This function sets a single byte in the currently generated SMS message.

Function Prototype:

long SMS_Set_TXMessageByte(long index,long ByteValue)

Function Parameters:

Index This parameter specifies the byte to modify in the currently
generated SMS message. This value should range from 1 to
NumBytes

ByteValue This byte value is stored into the index location in the currently
generated SMS message

AI-7280 DLL Programmers Guide 128

Advent Instruments Inc. SMS Functions

4.2.7 SMS_Get_TXDLLXSum

Description:

This function returns the Data Link Layer checksum from the currently generated SMS
message.

Function Prototype:

long SMS_Get_TXDLLXSum (long *XSum)

Function Parameters:

XSum This parameter returns the checksum from the generated SMS
message

4.2.8 SMS_Set_TXDLLXSum

Description:

This function sets the Data Link Layer checksum in the currently generated SMS
message.

Function Prototype:

long SMS_Set_TXDLLXSum (long XSum)

Function Parameters:

XSum This parameter sets the checksum in the currently generated SMS
message

AI-7280 DLL Programmers Guide 129

SMS Functions Advent Instruments Inc.

4.2.9 SMS_Send

Description:

This function transmits the currenly generated SMS message (generated using the
SMS_Set_TXMessage function). The message can be transmitted with a specific time
delay from the previous SMS transmission or receiption using the RelativeTimeDelay
parameter.

Note: The minimum time delay between SMS receive and transmit events is 80ms
and requires a USB connection. This minimum timing can also be increased by
many factors including processor speed, loading, and the number of devices on
the USB bus.

Function Prototype:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

RelativeTimeDelay

Description:

Function Parameters:

long SMS_Send (long Deviceid, float RelativeTimeDelay, long Wait)

Function Parameters:

Deviceid

This value specifies the relative time delay between the
transmission of this SMS message and the end of the previous
SMS transmission or receiption. If the specified time has already
passed then the SMS message will be transmitted immediately.
Note: See notes above for additional information about the
minimum timing.

Wait If this parameter is non-zero then control will not be returned to
the calling program until the SMS message is completely
transmitted.

4.2.10 SMS_Set_MinFSKLevel

This function sets the minimum FSK level required for the SMS message receiver. All
incoming SMS messages below this level will be ignored.

Function Prototype:

long SMS_Set_MinFSKLevel (float MinFSKLevel)

MinFSKLevel This parameter sets the minimum FSK level (Vrms) for the
incoming SMS messages. All incoming SMS messages below this
level will be ignored.

AI-7280 DLL Programmers Guide 130

Advent Instruments Inc. SMS Functions

4.2.11 SMS_Receive

Description:

This function starts the SMS receiver algorithm. If wait is set to zero then this function
will return control immediately (before a message has been received). In this case, the
user MUST repeatedly call SMS_Get_RXStatus in order to determine when the
receiver is finished and to download the received message. Note: Setting wait to a
non-zero value results in the fastest receiver timing.

Function Prototype:

Deviceid

4.2.12 SMS_Stop_Receive

Deviceid

long SMS_Receive (long Deviceid , float RXTimeout, long Wait, long *
MsgReceived , long *TimedOut)

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

RXTimeout This parameter sets the number of millseconds to wait for the
complete receiption of an SMS message. In other words, this
parameter specifies the maximum allowed time from the function
call to the end of the incoming SMS message.

Wait If non-zero then this function will not return until an SMS message
has been received or the timeout has been reached.

MsgReceived If wait is set to a non-zero value, then when the function completes
this parameter will be set to a non-zero value if a message was
received

TimedOut If wait is set to a non-zero value, then when the function completes
this parameter will be set to a non-zero value if the SMS receiver
timedout.

Description:

This function allows the user to prematurely stop the SMS receiver before the timeout
has been reached. This function is only applicable if the SMS_Receive function is
called with the wait parameter set to zero.

Function Prototype:

long SMS_Stop_Receive (long Deviceid)

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 131

SMS Functions Advent Instruments Inc.

4.2.13 SMS_Get_RXStatus

Description:

This function returns the status of the SMS receiver. This function must be called if
SMS_Receive is called with the wait parameter set to 0. This function contains the
mechanism to download the received SMS packet.

Function Prototype:

MsgReceived

TimedOut

long SMS_Get_RXStatus (long Deviceid, long *IsActive,long
*MsgReceived, long *TimedOut)

Function Parameters:

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

IsActive This parameter indicates if the SMS receive algorithm is active.
Once this value returns a zero value, the user should check the
MsgReceived and TimedOut parameters.

If the IsActive property returns a zero value then the MsgReceived
property will be set to a non-zero value if a new SMS message was
received.

If the IsActive property returns a zero value then the TimedOut
property will be set to a non-zero value if the receiver timed out
before an SMS message was received.

AI-7280 DLL Programmers Guide 132

Advent Instruments Inc. SMS Functions

4.2.14 SMS_Get_RXMessageInfo

This function returns information on the latest SMS message received. Note: before
calling this function the user should check to insure that a message has been received
by using the MsgReceived parameter of either the SMS_Receive function or the
SMS_Get_RXStatus functions.

Deviceid

CSDetected

TotalBytes

NumTLDataBytes

Description:

Function Prototype:

long SMS_Get_RXMessageInfo (long Deviceid, long *CSDetected, long *
TotalBytes, long *NumTLDataBytes, float *FSKLevel, float * StartTime,
float *StopTime)

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter is set to a positive non-zero value if channel
seizure was detected in the incoming SMS message

This parameter returns the total number of bytes received in the
SMS message (this includes the message type, length, checksum,
and Tlbytes)

This parameter indicates the number of Transfer Layer data bytes
were decoded in the SMS message. (This value does not include
the message type ,length, or checksum)

StartTime This parameter returns a timer value of when the SMS packet
started

StopTime This parameter returns a timer value of when the SMS packet
ended

AI-7280 DLL Programmers Guide 133

SMS Functions Advent Instruments Inc.

4.2.15 SMS_Get_RXData

Description:

Function Prototype:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter will be set to a non-zero value if the checksum is
correct

NumFrameErrs This parameter returns the number of framing errors (incorrect
stop bits) detected in the SMS message.

TLBytes This parameter should point to the first location in an array of
bytes where the Transfer Layer bytes will be stored. This array
must be have a length equal to NumTLDatBytes which can be
obtained from the SMS_Get_RXMessageInfo function.

BytesToCopy This parameter sets the maximum number of bytes that will be
transferred into the TLBytes array. Normally this value should be
set to NumTLDatBytes as returned from the
SMS_Get_RXMessageInfo function. If you insure that this value
is always less than or equal to the size to the TLBytes array, then
you will prevent any possible General Protection Fault errors

This parameter indicates the actual number of bytes copied into the
TLBytes array (in the event that the BytesToCopy value was larger
than the number of bytes received in the message)

This function returns the data contents of the received SMS message. Note: before
calling this function the user should call the SMS_Get_RXMessageInfo function to
determine the number of bytes received in the SMS message (if any). The TLBytes
parameter of this function MUST be allocated to be at least NumTLDataBytes
bytes BEFORE this function is called.

long SMS_Get_RXData (long Deviceid, long *DLLMsgType, long *
DLLMsgLength, long *DLLXSum, long *XSumOK, long *NumFrameErrs,
char *ByRef TLByte,long BytesToCopy, long *BytesCopied)

Function Parameters:

Deviceid

DLLMsgType This parameter returns the Data Link Layer message type from the

received SMS message

DLLMsgLength This parameter returns the Data Link Layer message length
parameter from the SMS message (note: this is not neccessarity the
number of bytes returned in the TLBytes parameter, as this byte
could be corrupted)

DLLXSum This parameter returns the value of the Data Link Layer checksum

XsumOK

BytesCopied

AI-7280 DLL Programmers Guide 134

Advent Instruments Inc. SMS Functions

4.2.16 SMS_Get_RXAllBytes

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter should point to the first location in an array of
bytes where the message bytes will be stored. This array should
have a length equal to TotalBytes, which can be obtained from the
SMS_Get_RXMessageInfo function.

NumBytesToCopy

BytesCopied This parameter indicates the actual number of bytes copied into
the ByteValues array (in the event that the NumBytesToCopy value
was larger than the number of bytes received in the message)

Description:

This function returns all the bytes received in the SMS message into one array
argument. These index for these byte values will correspond to the byte status values
returned from the SMS_Get_RXByteStatus function.

Function Prototype:

 long SMS_Get_RXAllBytes (long Deviceid, char *ByteValues, long
NumBytesToCopy, long *BytesCopied)

Deviceid

ByteValues

This parameter sets the maximum number of bytes that will be
transferred into the ByteValues array. Normally this value should
be set to TotalBytes as returned from the
SMS_Get_RXMessageInfo function. If you insure that this value
is always less than or equal to the size to the ByteValues array,
then you will prevent accidental General Protection Fault errors

AI-7280 DLL Programmers Guide 135

SMS Functions Advent Instruments Inc.

4.2.17 SMS_Get_RXByteStatus

Function Parameters:

ByteStats

Description:

This function returns all the status bytes for the data received in the SMS message.
These index for these status values will correspond to the byte values returned from the
SMS_Get_RXAllBytes function.

Function Prototype:

long SMS_Get_RXByteStatus (long Deviceid, char *ByteStats, long
NumBytesToCopy, long *BytesCopied)

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter should point to the first location in an array of
bytes where the status bytes will be stored. This array should have
a length equal to TotalBytes, which can be obtained from the
SMS_Get_RXMessageInfo function.
If any of the values are non-zero, this indicates that a framing
error occurred when receiving the corresponding byte value.

NumBytesToCopy This parameter sets the maximum number of bytes that will be
transferred into the ByteStats array. Normally this value should be
set to TotalBytes as returned from the SMS_Get_RXMessageInfo
function. If you insure that this value is always less than or equal
to the size to the ByteStats array, then you will prevent accidental
General Protection Fault errors

BytesCopied This parameter indicates the actual number of bytes copied into
the ByteStats array (in the event that the NumBytesToCopy value
was larger than the number of bytes received in the message)

AI-7280 DLL Programmers Guide 136

Advent Instruments Inc. Other Functions

5 Other Functions

5.1 Global Script Program Functions
The global script program functions allow the DLL to load script programs compiled for
the AI-7280 directly on the AI-7280. These script programs can be generated
automatically through the TRSim software package, or compiled in the AI-workbench
environment. Note: when a global script is run, all normal DLL functions are suspended
until the global script program is terminated.

5.1.1 Run_GlobalProgram

long Run_GlobalProgram(long Deviceid, long Processor, char UserScript[])

Deviceid

Processor

This parameter should contain the compiled script program. This
compiled code can be located in the .obc files generated by either
AI-Workbench or TRSim.

Description:

This function executes a global script program on the AI-7280. Once this function has
successfully completed, all normal DLL functions are suspended until the global script
program is terminated.

Function Prototype:

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter specifies which of the 6 virtual processors to
execute the global script program on.

UserScript

AI-7280 DLL Programmers Guide 137

Other Functions Advent Instruments Inc.

5.1.2 Run_GlobalFlashProgram

Function Prototype:

long Run_GlobalFlashProgram (long Deviceid, long Processor, long
ProgramNum)

Function Parameters:

ProgramNum

5.1.3 Halt_GlobalProgram

Function Prototype:

Function Parameters:

Description:

This function executes a global script program stored in the flash memory on the AI-
7280. Once this function has successfully completed, all normal DLL functions are
suspended until the global script program is terminated.

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

Processor This parameter specifies which of the 6 virtual processors to
execute the global script program on.

This parameter specifies the file number of the program to
execute.

Description:

This function halts all global script programs executing on the AI-7280 and resumes
normal DLL operations. Note: all signal generation will be stopped after this call and
many of the signalling setting may be modified due to the global program operation.
Care must be excercised to insure that all the necessary signalling values are restored
after this function call.

long Halt_GlobalProgram (long Deviceid)

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

AI-7280 DLL Programmers Guide 138

Advent Instruments Inc. Other Functions

5.1.4 Get_GlobalProgramStatus

This function returns the status of one of the six processors that can be executing a
global script program.

Description:

Function Prototype:

long Get_GlobalProgramStatus (long Deviceid, long Processor, long * Status)

Function Parameters:

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

Processor This parameter specifies which processor’s status should be
returned

Status This value returns the status of the script processor. The expected
values are:

0 = Stopped
1 = Running
2 = Halted (can be resumed)
3 = Single stepping mode
4 = waiting for interrupt

If the status value is not one of the above values then this indicates
that an error has occurred on the processor. Please contact
technical support if you encounter such a condition.

AI-7280 DLL Programmers Guide 139

Other Functions Advent Instruments Inc.

5.1.5 Get_GlobalProgramVariable

Function Prototype:

long Get_GlobalProgramVariable (long Deviceid, long Processor, long
VarNum, long VariableType, long IsString, char Value[])

Deviceid

Processor

VariableType

0 = Processor Data Pool (for the processor specified)
1 = Global Data Pool (shared by all processors)

If this value is non-zero then the “value” parameter is treated as a
string, otherwise it is assumed that “value” is a string
representation of a numeric value ie. “1.0245”

Value

Description:

This function returns the status of one of the six processors that can be executing a
global script program.

Function Parameters:

The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

This parameter specifies which processor’s memory pool should
be accessed

VarNum This parameter specifies the variable location in the memory pool
to access

This parameter specifies which memory pool to access. The
possible values are:

2 = Register Location (for the processor specified)

IsString

This parameter returns a string or numeric value from the
specified data pool. This string must be initialized to at least
200 characters before calling this function. See Data Type
Summary for initialization details.

AI-7280 DLL Programmers Guide 140

Advent Instruments Inc. Other Functions

5.1.6 Put_GlobalProgramVariable

Description:

This function returns the status of one of the six processors that can be executing a
global script program.

Function Prototype:

long Put_GlobalProgramVariable (long Deviceid, long Processor, long
VarNum, long VariableType, long IsString, char Value[])

Function Parameters:

Deviceid The deviceid parameter specifies which AI-7280 to communicate
with. This deviceid must be returned by the Open_Device
function.

Processor This parameter specifies which processor’s memory pool should
be accessed

This parameter specifies the variable location in the memory pool
to access

VariableType This parameter specifies which memory pool to access. The
possible values are:

1 = Global Data Pool (shared by all processors)

If this value is non-zero then the “value” parameter is treated as a
string, otherwise it is assumed that “value” is a string
representation of a numeric value ie. “1.0245”

This parameter specifies a value to store in the specified location
in the data pool. If IsString is set to a non-zero value then this can
be any valid string up to 64 characters. If IsString is cleared then
this should be a decimal representation of a numeric value to
store. ie “1.023”. Note: this value cannot be in scientific or
exponential form.

VarNum

0 = Processor Data Pool (for the processor specified)

2 = Register Location (for the processor specified)

IsString

Value

AI-7280 DLL Programmers Guide 141

Error Codes Advent Instruments Inc.

6 Error Codes

Every function in the AI-7280 DLL returns a standard error code value that indicates if
the function completed with or without error. The value of the error code returned
indicates the nature of any error that occurred. The DLL function Get_ErrorDesc is
included to translate these error code values into English sentences to assist in debugging.

The error codes are categorized into four categories:

• Communication errors

• Resource conflict errors

• Parameter value errors

• Internal System Errors

Communication errors occur when communications with a device is lost,
communications resources are unavailable, or the device identifier in a function call is
invalid. Resource conflict errors occur when the specified task cannot be performed
because a required resource is already in use by another signal generator internal to the
AI-7280. Parameter value errors occur when an argument in a function call is outside of
the allowable range. Internal system errors are unexpected and should not occur during
normal operation, however the presence of the error condition prevents further execution.

The following sections document the error code values and the associated error
conditions.

AI-7280 DLL Programmers Guide 142

Advent Instruments Inc. Error Codes

6.1 Communication Errors

Error Code Name Description

1 Timeout Communications with the connected device
timed out. The device didn’t respond to a
communications request within a specified time
limit. All further communications with this
device will be halted.

2 Bad device ID The deviceid parameter of the function doesn’t
correspond to a valid communications handle
created by Open_Device

3 Bad port number The port number specified in the Open_Device
function is invalid.

4 Port not open The communications channel for the device is not
open or inactive due to an error.

5 No matching serial
number

No AI-7280 devices with matching serial number
(if specified) could be located on the
communications channel specified
The format of the serial number specified is
invalid. AI-7280 serial numbers must be in the
format “SN12XXXX” where the X characters are
replaced with the numeric digits 0 through 9.

7 Communications
halted

A communications error has occurred for this
device. The specified operation could not be
completed because the communications with the
connected device has been halted.

8 Communication
channel not ready

The communications channel is either in use or
unavailable.

9 Operation not
supported by current

AI-7280 software
version

The current software version in the AI-7280 does
not support the requested operation. Please check
www.adventinstruments.com for the latest
software version.

10 Bad Reset Script The reset script could not be executed. Please
insure that the flash file contents are not
corrupted.

6 Bad serial number
format

AI-7280 DLL Programmers Guide 143

http://www.adventinstruments.com/

Error Codes Advent Instruments Inc.

6.2 Resource Conflict Errors

Error Code Description

100 FSK conflict Tone generator A cannot be used while the FSK
generator is active. Also the SMS Receive
algorithm cannot be started while FSK is active

101 AM conflict

MF/DTMF conflict

Ring conflict No other signal generation function are allowed
while the ring generator is active

104 FSK already on The FSK generator must be stopped before it can
be started again.

105 MF/DTMF already
on

The MF/DTMF generator must be stopped before
it can be started again. This error will also occur
if the DTMF generator is started while MF is
running or vice versa.

106 FSK Dropout
Conflict

The FSK dropout properties cannot be updated
while the FSK generator is active.

107 SMS RX Conflict The current operation cannot complete because
the SMS Receive algorithm is already active.

108 Global Script
Running

A global script is executing. Normal DLL
operations are suspended until the global script
operations are terminated.

109 No Global Script
Running

No global scripts are running. The function called
is not available during normal DLL operation.

Name

Tone generators A and B cannot be used while
the AM generator is active

102 Tone generators C and D cannot be used while
either the MF or DTMF generators are active.

103

6.3 Parameter Value Errors

Error Code Name Description

500 Parameter 1 too low The value of parameter 1 is below the acceptable
range of values

501 Parameter 1 too high The value of parameter 1 is above the acceptable
range of values.

502 Parameter 1 invalid Parameter 1 is invalid. Check the acceptable
range of values for this parameter.

503 Parameter 2 too low The value of parameter 2 is below the acceptable
range of values

504 Parameter 2 too high The value of parameter 2 is above the acceptable
range of values.

505 Parameter 2 invalid Parameter 2 is invalid. Check the acceptable
range of values for this parameter.

506 Parameter 3 too low The value of parameter 3 is below the acceptable
range of values

507 Parameter 3 too high The value of parameter 3 is above the acceptable
range of values.

508 Parameter 3 invalid Parameter 3 is invalid. Check the acceptable

AI-7280 DLL Programmers Guide 144

Advent Instruments Inc. Error Codes

range of values for this parameter.
509 Parameter 4 too low The value of parameter 4 is below the acceptable

range of values
510 Parameter 4 too high The value of parameter 4 is above the acceptable

range of values.
511 Parameter 4 invalid Parameter 4 is invalid. Check the acceptable

range of values for this parameter.
512 Parameter 5 too low The value of parameter 5 is below the acceptable

range of values
513 Parameter 5 too high The value of parameter 5 is above the acceptable

range of values.
Parameter 5 invalid

Parameter 6 too low The value of parameter 6 is below the acceptable
range of values

516 Parameter 6 too high The value of parameter 6 is above the acceptable
range of values.

Parameter 6 invalid Parameter 6 is invalid. Check the acceptable
range of values for this parameter.

518 Parameter 7 too low The value of parameter 7 is below the acceptable
range of values

Parameter 7 too high The value of parameter 7 is above the acceptable
range of values.

Parameter 7 invalid Parameter 7 is invalid. Check the acceptable
range of values for this parameter.

Parameter 8 too low The value of parameter 8 is below the acceptable
range of values

Parameter 8 too high The value of parameter 8 is above the acceptable
range of values.

Parameter 8 invalid

Bad MF symbol

531 Bad DTMF digit One or more of the DTMF digits specified in an
argument string is invalid. Valid DTMF digits
correspond to the characters “0” to “9”, “A” to
“D”, “*” and “#”

532 String too long

String contains non-
printable character

One of the string parameters in the function call
contains a non-printable character ie. ASCII code
is less than 32

User script program
too long

The script program specified is too large to fit
into the remaining memory in the AI-7280

Global Data Register
In Use

The global data pool register location specified is
already in use by the DLL. Please select a storage
location at a larger address.

536 Illegal CR or LF An illegal Carriage Return (13) or Line Feed (10)
character was detected midway through the string
argument

Flash File Doesn’t
Exist

The flash file specified doesn’t exist.

514 Parameter 5 is invalid. Check the acceptable
range of values for this parameter.

515

517

519

520

521

522

523 Parameter 8 is invalid. Check the acceptable
range of values for this parameter.

530 One or more of the MF symbols specified in an
argument string is invalid. Valid MF symbols
range from “A” to “T” (not case sensitive)

One of the string arguments in the function is too
long. String arguments must be limited to 64
characters in length.

533

534

535

537

AI-7280 DLL Programmers Guide 145

Error Codes Advent Instruments Inc.

6.4 Internal System Errors
While undesirable, it is sometimes unavoidable that an expected error condition may
occur that prevents further execution. This DLL handles these errors as internal system
errors and return codes with values greater than 600. If your application causes a system
error, please contact technical support with the error code number and any additional
information on the conditions or code that caused the error.

AI-7280 DLL Programmers Guide 146

Advent Instruments Inc. DLL Demo Program

7 DLL Demo Program

A demonstration program is included with the AI-7280 DLL to allow a developer to
experiment with the DLL function calls through a graphical user interface. To run the
demo program execute the file 7280DLLdemo.exe that was installed with the DLL
developer kit. Figure 1 below shows the initial window of the demonstration program.

Figure 1 DLL Demonstration Program

The tabs at the top of the screen sort the functions by category to make finding the
appropriate function simpler. To make a function call, select the appropriate function
category by clicking on the desired tab and then select the function name using the drop-
down list to the right of the ‘Select Function’ label. The function description and the
function prototype will appear. Now you can insert values for each function parameter by
typing either integer, floating point, or string values into the text boxes to the right of
each function parameter. To get more information on a device parameter hold the mouse
cursor over the name of the parameter and a short description of the parameter will
appear. To call the function, simply click the button with the function name in the
function parameter section. When the function completes a box will appear in the return
value section with either “No Error” if the function completed normally, or a description
of the error if the function returned an error code. An example of the return value display
is shown in Figure 2.

AI-7280 DLL Programmers Guide 147

DLL Demo Program Advent Instruments Inc.

Figure 2 Demo Program Return Value Display

To begin using the demo program with the AI-7280, connect an AI-7280 unit to the serial
or USB port on the PC and call Open_Device (with the appropriate settings) by clicking
on the button labeled “Open_Device” in the function prototype. Once this function has
been successfully called, all of the other functions can be used. All the deviceid fields
will be automatically completed with the deviceid of the last device connected to using
Open_Device.

Some of the functions require parameters to be passed as arrays, such as the
Get_ACCapSamples function. The demo program handles the arrays through text files.
Any function arguments that require an array appear with a small box to the right as
shown in Figure 3.

AI-7280 DLL Programmers Guide 148

Advent Instruments Inc. DLL Demo Program

Figure 3 Array Parameter in Function Call

To specify the path of the text file click on the button and a dialog will appear that will
allow you to select the file. Once the file has been selected the path of the file will appear
in the gray box next to the function parameter. If the array is an input argument the values
in the file will be loaded at this time. If the array is an output parameter, then the values
from the function call will be saved to file when the function call is made. The text file
format requires one data point per line in decimal or exponential format (ie 1.239547e-3,
345.23, 0.0001). Also, if the array parameter is of integer type you can specify
hexidecimal numbers in the format 0x0F1A2. Do not pad with spaces or any other
characters in the array arguments.

AI-7280 DLL Programmers Guide 149

Advent Instruments Inc. Using Scripting Features

8 Using Scripting Features

The AI-7280 allows the user to gain direct control over the AI-7280 features by loading
and running a script directly on the AI-7280. The script program can be run in
conjunction with other DLL functions using the Run_UserScript and related functions. If
the user wishes to take complete control of the unit (as may be necessary for some
extremely complicated sequences) then the Run_GlobalScript and related function should
be used. The following sections outlines the general procedures for generating and
running scripts through the DLL interface.

8.1 Generating Scripts with AI-Workbench
AI-Workbench is the software tool used for generating all script programs for the AI-
7280. AI-Workbench can be found on the CD distributed with the AI-7280 and also on
the web at www.adventinstruments.com.

Once you have installed the AI-Workbench software, run the program and open a new
project by selecting [File][New Project]. You will be presented with a project properties
window as shown in Figure 4.

Figure 4 AI-Workbench Project Properties

AI-7280 DLL Programmers Guide 151

http://www.adventinstruments.com/

Using Scripting Features Advent Instruments Inc.

Give your project an appropriate title in the “Flash Program Title” box and insure that the
Target Device dialog is selected to the correct version for your AI-7280, and then click
“OK”.

A source code window will now appear where you can enter your source code. An
example of a very simple program is shown in Figure 5.

Figure 5 AI-Workbench Example Script

The script shown in Figure 5 sweeps a tone through 6 starting from 440Hz increasing by
50% on each pass. The AI-Workbench syntax and structure is quite involved and is
beyond the scope of this document. For more information on the scripting language you
should contact technical support for the appropriate documentation. Most of the basic
script structure is documented in the manual for the AI-80, however there are obvious
syntax and functionality differences between the two products.

Once you have completed your script you should save the project by clicking [File][Save
Project]. The software will then prompt you for the name of the project, and then the
name of the source file.

Once the project is saved you can compile the project by clicking [Run][Compile]. If the
compilation is successful then a project status window will appear as shown in Figure 6.

AI-7280 DLL Programmers Guide 152

Advent Instruments Inc. Using Scripting Features

Figure 6 AI-Workbench Compiler Status

BUF1X1TIN440HN96TIN1HN98TIN1HN95TIN0VN6TIN1000VN6WVN6TIN5VN6S
JIN0ASIN1CLIN0F2SATHN96VN6AMIN1.5TVN6HN96TIN0VN6TIN1000VN6WVN
6SOSRX2SQTIN0HN95ZS0

When the compilation is successful, the compiler will generate an .obc file in the same
directory as the project with the same name. So if your project name was “Test.prj” the
compiler will generate a file named “Test.obc”. The contents of this file are the
“executable code” for the AI-7280’s internal processor. The file will be in ASCII format
and should be viewable through a simple text editor program like Notepad. The contents
of the .obc file for the above example is:

The contents of this file is the string argument that should be passed as the script
argument to any of the script functions. NOTE: Do not modify this scripts with any
whitespace, CR,LF characters or it may produce unpredictable results. There
should only be one carriage return in the string located at the very end.

8.2 Designing and Running Scripts
Now that you have an idea how to write and compile AI-7280 script programs (as
described in Section 8.1), you have to decide how you want the script to operate.

The AI-7280 has six processors each with its own memory space with which to run script
programs. In addition to this local processor memory space, the AI-7280 has global
memory space, which can be accessed by all of the processors. The DLL actually utilized
five of these processors for managing many of the simultaneous activites that can be
managed by the AI-7280. The sixth processor is left free so that users may generate
programs to perform complicated actions that may not be possible through the normal
DLL functions.

The AI-7280 DLL allows the users to execute scripts in two different fashions: User
Scripts, and Global Scripts.

AI-7280 DLL Programmers Guide 153

Using Scripting Features Advent Instruments Inc.

User Scripts are run on the sixth processor in parallel with normal DLL functions – this
allows the user to supliment the functionality of the DLL without giving up the
functionality of the current DLL functions. Unfortunately, since user scripts operate in
conjunction with DLL scripts, very specific rules must be followed or the user may
“break” the functionality of the DLL. The functions Run_UserScript, Control_Script,
Get_ScriptStatus, Get_ScriptVariable, and Put_ScriptVariable all operate on user scripts.

Global Scripts are run completely independently of the DLL functions. When a global
script is run, all DLL functions are suspended and all six processors are relinquished.
This allows the user the most flexibility and memory useage, however none of the DLL
functions will operate while a global script is run. When the global script is stopped, all
normal DLL functions will continue. The TRSimm package can automatically generate
global scripts from some CallerID sequences.

1. Load the contents of the scripts .obc file into a string variable (or string constant).
Insure that you do not modify the contents of the string.

2. Call the Run_UserScript function and pass the script as a string parameter.

To run a user script that you authored using the steps in the previous section.

3. Once the script is running you should be able to monitor variables running on the
processor using Get_ScriptVariable. Care should be taken when using Put_ScriptVariable
to insure that you do not interfere with normal script operations!

3. You should periodically monitor the status of the script processor using
Get_ScriptStatus until the script completes. Note: Your code should be prepared for the
condition where the script does not complete or indicates a processor error. If this
condition exists you should shut down the processor using Control_Script before
continuing.

4. Once the script has completed (or you have shut the script down) you should be free to
continue your normal DLL program.

The example code packaged with the DLL shows a simple example of how to run a
global script on the AI-7280 in the function Run_GlobalProgramOn7280. If you require
any further information on using these function calls or specific script information then
please contact technical support.

8.3 Rules for User Scripts
Since user scripts run concurrently with the five other DLL support scripts it is vital that
the programmer observe some basic rules for desiging user scripts.

1. Avoid global variables! The DLL support scripts use many global variables for
communication between processes. It is unlikely that your program will require similar
functionality, so it would be best to avoid using global memory space. Local processor
variables cannot interfere with the DLL support scripts. If you decide to use global
variables then be sure to follow the next rule!

2. Always check global variable usage! The DLL support script uses many global
variables for communication between processes starting from location 0 and working up
to a maximum value. The next available global variable location for user scripts can be
returned using the function Get_FirstAvailGlobalReg. Note: This value may change with
DLL versions since features are always being added. It would be a good idea to always
design your memory map from the largest available location down to avoid conflicts. It is
an even better idea to avoid global variable usage.

AI-7280 DLL Programmers Guide 154

Advent Instruments Inc. Using Scripting Features

3. Always check the size of your script! Your user script program must share code
space with the DLL support script. Always insure that your user script is shorter than the
length returned by Get_ScriptMemAvail. Attempting to load a script larger than this
value will fail. The maximum size of a user script will also change with DLL version.

4. Do not use the communication features! The scripting language allows the AI-7280
to send and receive characters on the COMM and USB port. Using these features while
the DLL is active will almost guarantee and error as it will disrupt the normal DLL-to-
script communications!

5. Do not access reasources you know to be active in the DLL! If your script attempts
to access a resource (for example the ring generator) that is already being used by the
DLL (say through Start_Ring) the AI-7280 may produce unexpected results.

6. Always leave things the way you found them! Since the user script program runs
directly on the AI-7280 and has complete access to all of the device resources, it is
possible to change device properties without updating some DLL support script status
variables. It is good practice to always return system resources (tone generators, ring
generators, etc) back to the original state after your user script terminates.

AI-7280 DLL Programmers Guide 155

Revision History Advent Instruments Inc.

9 Revision History

Release 1.0

 First public release

Release 1.1

� New functions allow scripts to be loaded and run through DLL interface

� The documentation has been corrected to indicate long types instead of int
(since the size of the int data type is compiler specific. The AI-7280 DLL passes
and returns 32-bit integer arguments)

Release 3.0

� Add_FSKHexString, and Set_RingCadence functions have been added to the
DLL

� Fixed bug with the system timer

� Fixed bug with Comm port flow control

Release 2.0

� Tone generators can operate up to 18KHz

� Added support for AI-7280 Rev 2 features which includes

o Metering Pulse Functions

o Dropout support for FSK generator

o Automatic echo disable during ringing

� Fixed bug in Get_Echo function (previously this would only retrieve Tap 0)

Release 2.1

� A .h and .lib file has been included in the distribution to allow easy integration
into Microsoft Visual C++ projects

� A small C++ example program has been added to the distribution to demonstrate
the function calls.

� A correction has been made to the dll to prevent “Unprintable Character” errors
from occurring with certain string arguments.

� Corrected documentation for logic levels in Digital Output functions

� New CallerID support functions have been added to allow the user to easily
generate and send CallerID sequences without using the low level fuction calls

� New SMS support functions have been added to allow the transmission and
receiption of SMS messages.

AI-7280 DLL Programmers Guide 156

Advent Instruments Inc. Revision History

� Added Start_MeterPulseWithCount and Get_MeterPulseCount functions to
support generation of a specific number of metering pulses. (Available with Rev
2.12 AI-7280 firmware)

� Added global script support which allows any AI-7280 script program to be
loaded, executed, and monitored.

Release 3.0a

� Corrected typos in documentation

Release 4.0

� Added Create_OSI function so that Open Switching Intervals (OSIs) can be
generated with more precise timing

� Added the Wait_For_LineFlash function to make the detection of a line flash
simpler

� Updated Echo functions to indicate linear gain (V/V)

� Improved the documentation of the FSK dropout functions

Release 4.0d

Release 4.1

� Fixed minor bug in Get_MeterPulseCount, which would erroneously return a
“parameter out of range” error.

� Corrected Close_Device parameter to to indicate pass by reference not by value

� Corrected Set_MFSymbol function to indicate Freq2 is passed by reference not
by value.

� Added section to describe how to write and execute script programs on the AI-
7280 using AI-Workbench and the DLL interface.

Release 3.0b

Release 3.1

� Fixed internal error which occurred when any tones were active before
CID_Send was called using signaling type 4. The modifications allow tone
generator B to be active through the CallerID sequence with signalling type 4.

� Improved Start_Tone behaviour such that successive calls to Start_Tone with a
tone pattern will start the new tone pattern immediately.

� Added functions Wait_For_PulseDial and Get_PulseDial_Stats to make pulse
dialing detection simpler

Release 4.0b

Release 4.0c

� Corrected documentation of Start_FSKGen function to include the bitindex
parameter

� Improved the documentation to better reflect the initialization requirements for
strings used as output arguments.

� Updated dll to trap invalid MaxTime values in Wait_For_HookState and
Wait_For_DTMF functions and updated documentation to indicate the limits on
MaxTime parameters

� Improved communication timeout code

AI-7280 DLL Programmers Guide 157

Revision History Advent Instruments Inc.

Release 4.1b

� Added documentations for VB.net users to highlight differences in the “Long”
and “Integer” representations

� Added example project for VB.net users

Rev 4.2

� Added timing function which allow the user to determine when DTAS and FSK
were sent during a CallerID sequence

� Fixed initialization bug which prevented connection to AI-7280 when serial
number was specified on USB

� Added a complete Visual Studio 6 C++ project example complete with updated
examples

� Minimum system requirements now require Windows 2000 SP4 or greater

• Fixed minor documentation errors

• Updated domain names in documentation

Rev 4.4

� Resolved timing issue which could cause communication errors on slower PCs
connecting using COM port

� Slight change in directory structure for installed program

Rev 4.5

• Added Set_ BNCOutGain function

Rev 4.5a

Rev 4.6

• Mentioned removing limit checking on feed parameters.

• Updated USB driver install procedures and minor documentation errors

AI-7280 DLL Programmers Guide 158

Advent Instruments Inc. Support

10 Support

• Email: Technical Questions: techsupport @adventinstruments.com

• In North America:

 Fax: (604) 944-7488

 111 - 1515 Broadway Street

For assistance in hardware setup, program installation, software operation, or general
questions, please contact us in any of the following methods.

 Sales Inquires: sales@adventinstruments.com

 Tel: (604) 944-4298

 Mail: Advent Instruments Inc.

 Port Coquitlam, BC, V3C6M2

 Canada

• In Asia:

 Tel: (852) 8108-1338

 Fax: (852) 2900-9338

 Mail: Advent Instruments (Asia) Ltd.

 Unit No. 7, 9/F, Shatin Galleria

 18 - 24 Shan Mei Street

 Fotan, Shatin, N.T.

 Hong Kong

AI-7280 DLL Programmers Guide 159

Appendix A: USB Driver Installation Advent Instruments Inc.

11 Appendix A: USB Driver
Installation

The WHQL certified driver files are automatically installed along with the TRsSim
application and the following procedure should only be required if the end application
will not use the TRsSim software.

The drivers may be installed manually by using the add remove hardware wizard or via
the self extracting installer package. The following figures show the step by step
procedure for installing the USB drivers with this installer package.

1. Download the USB installer Package

The USB installer package can be downloaded from our website at the following page

http://www.adventinstruments.com/Downloads/ or copied from the original CDrom
provided with the instrument.

AI-7280 DLL Programmers Guide 160

Advent Instruments Inc. Appendix A: USB Driver Installation

2. Run the USB installer Package

Once the file is located on the target computer double click on the file to start the self
extraction and the following window will be displayed.

3. Click on the Next button to install the driver files

Windows will now copy the driver files from the installer package to the target computer.

AI-7280 DLL Programmers Guide 161

Appendix A: USB Driver Installation Advent Instruments Inc.

AI-7280 DLL Programmers Guide 162

4. Confirm the Driver installed correctly

Once Windows has completed the installation of the driver files the following window
will display the results. Confirm that there are two marks beside both of the listed
driver names.

5. Click on the Finish button to exit the installer

The driver is now installed and you may connect the instrument to the PC via a USB
cable.

6. Connect the Instrument to the PC via the USB cable

The following brief popup bubble will appear indicating Windows has detected the new
instrument.

Then a short time later the following popup will appear and the instrument is recognized
by Windows and the PC.

	DLL Programmers Guide
	Getting Started
	Introduction
	What Has Changed in Rev 4.x
	Minimum System Requirements
	Installing the DLL Developer’s Kit
	Connecting to the PC
	USB Driver
	RS-232

	Files Included in the Developer’s Kit
	Examples

	Low Level DLL Function Reference
	DLL Function Usage
	Data Type Summary
	Language Compatibility
	Thread Safety

	System Functions
	Open_Device
	Close_Device
	Get_DLLVer
	Get_ErrorDesc
	Get_DeviceVer
	Set_Timer
	Get_Timer
	Waitms
	Get_Error
	Get_NumUSBDevices
	Get_USBSerial

	Telephone Interface Functions
	Set_TelIntFeed
	Set_TelIntImped
	Set_TelIntPolarity
	Set_TelIntDisconnect
	Set_TelIntMeasPoint
	Get_TelIntHookStatus
	Ramp_TelIntVoltage
	Set_TelIntHookThreshold
	Get_TimeStamps
	Set_OnHookTime
	Set_OffHookTime
	Wait_For_HookState
	Wait_For_LineFlash
	Create_OSI

	Routing Functions
	Set_MeterSource
	Set_AnalyzerSource
	Set_BNCOutSource
	Set_BNCOutGain
	Set_TelIntGenGain
	Set_BNCInGain

	Measurement Functions
	Set_MeterSpeed
	Get_MeterReading
	Get_THDReading
	Get_TelIntLineVolt
	Get_TelIntLoopCurrent
	Get_TelIntUnbalCurrent
	Set_Filter
	Set_NotchFilter

	Tone Generation Functions
	Set_Tone
	Set_ToneShape
	Start_Tone
	Stop_Tone
	Set_TonePattern
	Get_ToneStatus

	AM Modulation Functions
	Set_AMMod
	Start_AMMod
	Stop_AMMod
	Get_AMModStatus

	Ringing Functions
	Set_Ring
	Set_RingPattern
	Set_RingShape
	Start_Ring
	Stop_Ring
	Get_RingStatus
	Set_RingCadence

	Echo Functions
	Set_Echo
	Get_Echo
	Set_EchoRingDisable
	Get_EchoRingDisable

	FSK Generator Functions
	Set_FSKGen
	Clear_FSKGen
	Add_FSKMarkBits
	Add_FSKSpaceBits
	Add_FSKAltBits
	Add_FSKByte
	Add_FSKString
	Add_FSKHexString
	Put_FSKBinaryData
	Add_FSKXSum
	Set_FSKFormat
	Set_FSKXSum
	Get_FSKXSum
	Start_FSKGen
	Stop_FSKGen
	Set_FSKGenWaveShape
	Get_FSKGenStatus
	Clear_FSKDropOut
	Set_FSKDropout
	Get_FSKDropout

	DTMF/MF Generator Functions
	Set_DTMF
	Send_DTMF
	Stop_DTMF
	Get_DTMFStatus
	Set_MFSymbol
	Set_MFOffTime
	Send_MF
	Stop_MF
	Get_MFStatus

	FSK Decoder Functions
	Clear_FSKDecoder
	Set_FSKDecThreshold
	Get_FSKDecMarkTime
	Start_FSKDecoder
	Stop_FSKDecoder
	Get_FSKDecNumBytes
	Get_FSKDecByte

	DTMF Detector Functions
	Set_DTMFDet
	Start_DTMFDet
	Stop_DTMFDet
	Wait_For_DTMF
	Get_DTMFDet
	Get_DTMFDetNumDigits
	Get_DTMFDetDigit
	Delete_DTMFDetDigits

	Capture and Playback Functions
	Start_ACCap
	Stop_ACCap
	Get_ACCapStatus
	Get_ACCapSamples
	Put_ACCapSamples
	Get_ACCapIndex
	Play_ACCap
	Get_PlaybackStatus
	Stop_Playback
	Start_DCCap
	Stop_DCCap
	Get_DCCapStatus
	Get_DCCapSamples
	Get_DCCapIndex

	Digital I/O Functions
	Get_Din
	Set_DoutA
	Set_DoutB
	Set_DoutC

	Noise Generator Functions
	Set_Noise
	Start_Noise
	Stop_Noise

	Metering Pulse Functions
	Set_MeterPulse
	Get_MeterPulse
	Start_MeterPulse
	Stop_MeterPulse
	Start_MeterPulseWithCount
	Get_MeterPulseCount

	Miscellaneous Functions
	Load_UserWaveShape

	Script and Command Functions
	Send_TextCommand
	Get_ScriptMemAvail
	Get_FirstAvailGlobalReg
	Run_UserScript
	Control_Script
	Get_ScriptStatus
	Get_ScriptVariable
	Put_ScriptVariable

	Pulse Dialing Functions
	Wait_For_PulseDial
	Get_PulseDial_Stats

	CallerID Functions
	Physical Layer Function Calls
	CID_Set_FSK
	CID_Set_DTAS
	CID_Set_Ring
	CID_Set_RingCadence
	CID_Set_NumRings
	CID_Set_DTMF
	CID_Set_RPAS

	CallerID Timing/Signalling Functions
	CID_Set_TimingToRing
	CID_Set_TimingToData
	CID_Set_TimingToDTAS
	CID_Set_TimingToLineReverse
	CID_Set_HookTimeout
	CID_Set_ACKDetector
	CID_Set_OSI_Duration

	CallerID Message Functions
	CID_Set_MessageFormat
	CID_Set_MessageParity
	CID_ClearMessage
	CID_SDMF_Number
	CID_SDMF_Absence
	CID_SDMF_VMWI
	CID_MDMF_Set_MessageType
	CID_MDMF_Add_Parameter
	CID_MDMF_Add_DateTime
	CID_MDMF_Add_CallingNum
	CID_MDMF_Add_NumAbsence
	CID_MDMF_Add_CallingName
	CID_MDMF_Add_NameAbsence
	CID_MDMF_Add_VisualInd
	CID_Send
	CID_Get_ACK_Info
	CID_Get_NumMessageBytes
	CID_Get_MessageByte
	CID_Set_MessageByte
	CID_Get_CheckSum
	CID_Set_CheckSum
	CID_DTMF_Set_StopCode
	CID_DTMF_AddParameter

	CallerID Signalling Types
	CallerID Transmission Timing Fuctions
	CID_Get_DTAS_StartTime
	CID_Get_FSK_StartTime

	SMS Functions
	Physical Layer/Timing Functions
	SMS_Set_FSK
	SMS_Reset_Timer

	SMS Message TX/RX Functions
	SMS_Set_TXMessageFormat
	SMS_Set_RXProtocol
	SMS_Set_TXMessage
	SMS_Get_NumTXMessageBytes
	SMS_Get_TXMessageByte
	SMS_Set_TXMessageByte
	SMS_Get_TXDLLXSum
	SMS_Set_TXDLLXSum
	SMS_Send
	SMS_Set_MinFSKLevel
	SMS_Receive
	SMS_Stop_Receive
	SMS_Get_RXStatus
	SMS_Get_RXMessageInfo
	SMS_Get_RXData
	SMS_Get_RXAllBytes
	SMS_Get_RXByteStatus

	Other Functions
	Global Script Program Functions
	Run_GlobalProgram
	Run_GlobalFlashProgram
	Halt_GlobalProgram
	Get_GlobalProgramStatus
	Get_GlobalProgramVariable
	Put_GlobalProgramVariable

	Error Codes
	Communication Errors
	Resource Conflict Errors
	Parameter Value Errors
	Internal System Errors

	DLL Demo Program
	Using Scripting Features
	Generating Scripts with AI-Workbench
	Designing and Running Scripts
	Rules for User Scripts

	Revision History
	Support
	Appendix A: USB Driver Installation

